Mister Exam

Other calculators


arctg^n(1/n)

Sum of series arctg^n(1/n)



=

The solution

You have entered [src]
  oo          
 ___          
 \  `         
  \       n/1\
   )  atan |-|
  /        \n/
 /__,         
n = 1         
$$\sum_{n=1}^{\infty} \operatorname{atan}^{n}{\left(\frac{1}{n} \right)}$$
Sum(atan(1/n)^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\operatorname{atan}^{n}{\left(\frac{1}{n} \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \operatorname{atan}^{n}{\left(\frac{1}{n} \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\operatorname{atan}^{n}{\left(\frac{1}{n} \right)} \operatorname{atan}^{- n - 1}{\left(\frac{1}{n + 1} \right)}\right)$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
Numerical answer [src]
1.03759893862009285215437105857
1.03759893862009285215437105857
The graph
Sum of series arctg^n(1/n)

    Examples of finding the sum of a series