Mister Exam

Other calculators


arctg(1/(n^2+n+1))

Sum of series arctg(1/(n^2+n+1))



=

The solution

You have entered [src]
  oo                  
____                  
\   `                 
 \        /    1     \
  \   atan|----------|
  /       | 2        |
 /        \n  + n + 1/
/___,                 
n = 1                 
$$\sum_{n=1}^{\infty} \operatorname{atan}{\left(\frac{1}{\left(n^{2} + n\right) + 1} \right)}$$
Sum(atan(1/(n^2 + n + 1)), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\operatorname{atan}{\left(\frac{1}{\left(n^{2} + n\right) + 1} \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \operatorname{atan}{\left(\frac{1}{n^{2} + n + 1} \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\operatorname{atan}{\left(\frac{1}{n^{2} + n + 1} \right)}}{\operatorname{atan}{\left(\frac{1}{n + \left(n + 1\right)^{2} + 2} \right)}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The graph
Sum of series arctg(1/(n^2+n+1))

    Examples of finding the sum of a series