Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 5^n 5^n
  • 24/((5-3n)(2-3n)) 24/((5-3n)(2-3n))
  • 0.5^n 0.5^n
  • (-1)/(2n-1)! (-1)/(2n-1)!
  • Identical expressions

  • (arcsin(x)/x)^ctg(x)
  • (arc sinus of (x) divide by x) to the power of ctg(x)
  • (arcsin(x)/x)ctg(x)
  • arcsinx/xctgx
  • arcsinx/x^ctgx
  • (arcsin(x) divide by x)^ctg(x)
  • Similar expressions

  • (arcsinx/x)^ctg(x)

Sum of series (arcsin(x)/x)^ctg(x)



=

The solution

You have entered [src]
  oo                 
____                 
\   `                
 \             cot(x)
  \   /asin(x)\      
  /   |-------|      
 /    \   x   /      
/___,                
n = 1                
n=1(asin(x)x)cot(x)\sum_{n=1}^{\infty} \left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)^{\cot{\left(x \right)}}
Sum((asin(x)/x)^cot(x), (n, 1, oo))
The radius of convergence of the power series
Given number:
(asin(x)x)cot(x)\left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)^{\cot{\left(x \right)}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=(asin(x)x)cot(x)a_{n} = \left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)^{\cot{\left(x \right)}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
            cot(x)
   /asin(x)\      
oo*|-------|      
   \   x   /      
(asin(x)x)cot(x)\infty \left(\frac{\operatorname{asin}{\left(x \right)}}{x}\right)^{\cot{\left(x \right)}}
oo*(asin(x)/x)^cot(x)

    Examples of finding the sum of a series