Mister Exam

Other calculators

Sum of series 3x^2-2



=

The solution

You have entered [src]
  oo            
 ___            
 \  `           
  \   /   2    \
  /   \3*x  - 2/
 /__,           
n = 1           
$$\sum_{n=1}^{\infty} \left(3 x^{2} - 2\right)$$
Sum(3*x^2 - 2, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$3 x^{2} - 2$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 3 x^{2} - 2$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
   /        2\
oo*\-2 + 3*x /
$$\infty \left(3 x^{2} - 2\right)$$
oo*(-2 + 3*x^2)

    Examples of finding the sum of a series