Mister Exam

分解 y^2+7*y-10 平方

要化简的表达式:

解答

You have entered [src]
 2           
y  + 7*y - 10
$$\left(y^{2} + 7 y\right) - 10$$
y^2 + 7*y - 10
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(y^{2} + 7 y\right) - 10$$
To do this, let's use the formula
$$a y^{2} + b y + c = a \left(m + y\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = 7$$
$$c = -10$$
Then
$$m = \frac{7}{2}$$
$$n = - \frac{89}{4}$$
So,
$$\left(y + \frac{7}{2}\right)^{2} - \frac{89}{4}$$
Factorization [src]
/          ____\ /          ____\
|    7   \/ 89 | |    7   \/ 89 |
|x + - - ------|*|x + - + ------|
\    2     2   / \    2     2   /
$$\left(x + \left(\frac{7}{2} - \frac{\sqrt{89}}{2}\right)\right) \left(x + \left(\frac{7}{2} + \frac{\sqrt{89}}{2}\right)\right)$$
(x + 7/2 - sqrt(89)/2)*(x + 7/2 + sqrt(89)/2)
General simplification [src]
       2      
-10 + y  + 7*y
$$y^{2} + 7 y - 10$$
-10 + y^2 + 7*y
Numerical answer [src]
-10.0 + y^2 + 7.0*y
-10.0 + y^2 + 7.0*y
Rational denominator [src]
       2      
-10 + y  + 7*y
$$y^{2} + 7 y - 10$$
-10 + y^2 + 7*y
Assemble expression [src]
       2      
-10 + y  + 7*y
$$y^{2} + 7 y - 10$$
-10 + y^2 + 7*y
Trigonometric part [src]
       2      
-10 + y  + 7*y
$$y^{2} + 7 y - 10$$
-10 + y^2 + 7*y
Combining rational expressions [src]
-10 + y*(7 + y)
$$y \left(y + 7\right) - 10$$
-10 + y*(7 + y)
Combinatorics [src]
       2      
-10 + y  + 7*y
$$y^{2} + 7 y - 10$$
-10 + y^2 + 7*y
Common denominator [src]
       2      
-10 + y  + 7*y
$$y^{2} + 7 y - 10$$
-10 + y^2 + 7*y
Powers [src]
       2      
-10 + y  + 7*y
$$y^{2} + 7 y - 10$$
-10 + y^2 + 7*y