Mister Exam

Factor polynomial x+6-x^2

An expression to simplify:

The solution

You have entered [src]
         2
x + 6 - x 
$$- x^{2} + \left(x + 6\right)$$
x + 6 - x^2
Factorization [src]
(x + 2)*(x - 3)
$$\left(x - 3\right) \left(x + 2\right)$$
(x + 2)*(x - 3)
General simplification [src]
         2
6 + x - x 
$$- x^{2} + x + 6$$
6 + x - x^2
The perfect square
Let's highlight the perfect square of the square three-member
$$- x^{2} + \left(x + 6\right)$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 1$$
$$c = 6$$
Then
$$m = - \frac{1}{2}$$
$$n = \frac{25}{4}$$
So,
$$\frac{25}{4} - \left(x - \frac{1}{2}\right)^{2}$$
Powers [src]
         2
6 + x - x 
$$- x^{2} + x + 6$$
6 + x - x^2
Assemble expression [src]
         2
6 + x - x 
$$- x^{2} + x + 6$$
6 + x - x^2
Numerical answer [src]
6.0 + x - x^2
6.0 + x - x^2
Common denominator [src]
         2
6 + x - x 
$$- x^{2} + x + 6$$
6 + x - x^2
Combining rational expressions [src]
         2
6 + x - x 
$$- x^{2} + x + 6$$
6 + x - x^2
Trigonometric part [src]
         2
6 + x - x 
$$- x^{2} + x + 6$$
6 + x - x^2
Rational denominator [src]
         2
6 + x - x 
$$- x^{2} + x + 6$$
6 + x - x^2
Combinatorics [src]
-(-3 + x)*(2 + x)
$$- \left(x - 3\right) \left(x + 2\right)$$
-(-3 + x)*(2 + x)