The perfect square
Let's highlight the perfect square of the square three-member
$$- 13 b^{2} + \left(- b x + x^{2}\right)$$
Let us write down the identical expression
$$- 13 b^{2} + \left(- b x + x^{2}\right) = \frac{53 x^{2}}{52} + \left(- 13 b^{2} - b x - \frac{x^{2}}{52}\right)$$
or
$$- 13 b^{2} + \left(- b x + x^{2}\right) = \frac{53 x^{2}}{52} - \left(\sqrt{13} b + \frac{\sqrt{13} x}{26}\right)^{2}$$
General simplification
[src]
$$- 13 b^{2} - b x + x^{2}$$
/ / ____\\ / / ____\\
| x*\-1 + \/ 53 /| | x*\1 + \/ 53 /|
|b - ---------------|*|b + --------------|
\ 26 / \ 26 /
$$\left(b - \frac{x \left(-1 + \sqrt{53}\right)}{26}\right) \left(b + \frac{x \left(1 + \sqrt{53}\right)}{26}\right)$$
(b - x*(-1 + sqrt(53))/26)*(b + x*(1 + sqrt(53))/26)
Rational denominator
[src]
$$- 13 b^{2} - b x + x^{2}$$
$$- 13 b^{2} - b x + x^{2}$$
Combining rational expressions
[src]
$$- 13 b^{2} + x \left(- b + x\right)$$
$$- 13 b^{2} - b x + x^{2}$$
Assemble expression
[src]
$$- 13 b^{2} - b x + x^{2}$$
$$- 13 b^{2} - b x + x^{2}$$
$$- 13 b^{2} - b x + x^{2}$$