Mister Exam

Other calculators

Factor x^2-12*x*y+4*y^2 squared

An expression to simplify:

The solution

You have entered [src]
 2               2
x  - 12*x*y + 4*y 
$$4 y^{2} + \left(x^{2} - 12 x y\right)$$
x^2 - 12*x*y + 4*y^2
General simplification [src]
 2      2         
x  + 4*y  - 12*x*y
$$x^{2} - 12 x y + 4 y^{2}$$
x^2 + 4*y^2 - 12*x*y
The perfect square
Let's highlight the perfect square of the square three-member
$$4 y^{2} + \left(x^{2} - 12 x y\right)$$
Let us write down the identical expression
$$4 y^{2} + \left(x^{2} - 12 x y\right) = - 32 y^{2} + \left(x^{2} - 12 x y + 36 y^{2}\right)$$
or
$$4 y^{2} + \left(x^{2} - 12 x y\right) = - 32 y^{2} + \left(x - 6 y\right)^{2}$$
in the view of the product
$$\left(- \sqrt{32} y + \left(x - 6 y\right)\right) \left(\sqrt{32} y + \left(x - 6 y\right)\right)$$
$$\left(- 4 \sqrt{2} y + \left(x - 6 y\right)\right) \left(4 \sqrt{2} y + \left(x - 6 y\right)\right)$$
$$\left(x + y \left(-6 - 4 \sqrt{2}\right)\right) \left(x + y \left(-6 + 4 \sqrt{2}\right)\right)$$
$$\left(x + y \left(-6 - 4 \sqrt{2}\right)\right) \left(x + y \left(-6 + 4 \sqrt{2}\right)\right)$$
Factorization [src]
/        /        ___\\ /        /        ___\\
\x - 2*y*\3 - 2*\/ 2 //*\x - 2*y*\3 + 2*\/ 2 //
$$\left(x - 2 y \left(3 - 2 \sqrt{2}\right)\right) \left(x - 2 y \left(2 \sqrt{2} + 3\right)\right)$$
(x - 2*y*(3 - 2*sqrt(2)))*(x - 2*y*(3 + 2*sqrt(2)))
Assemble expression [src]
 2      2         
x  + 4*y  - 12*x*y
$$x^{2} - 12 x y + 4 y^{2}$$
x^2 + 4*y^2 - 12*x*y
Combinatorics [src]
 2      2         
x  + 4*y  - 12*x*y
$$x^{2} - 12 x y + 4 y^{2}$$
x^2 + 4*y^2 - 12*x*y
Common denominator [src]
 2      2         
x  + 4*y  - 12*x*y
$$x^{2} - 12 x y + 4 y^{2}$$
x^2 + 4*y^2 - 12*x*y
Powers [src]
 2      2         
x  + 4*y  - 12*x*y
$$x^{2} - 12 x y + 4 y^{2}$$
x^2 + 4*y^2 - 12*x*y
Rational denominator [src]
 2      2         
x  + 4*y  - 12*x*y
$$x^{2} - 12 x y + 4 y^{2}$$
x^2 + 4*y^2 - 12*x*y
Combining rational expressions [src]
   2               
4*y  + x*(x - 12*y)
$$x \left(x - 12 y\right) + 4 y^{2}$$
4*y^2 + x*(x - 12*y)
Numerical answer [src]
x^2 + 4.0*y^2 - 12.0*x*y
x^2 + 4.0*y^2 - 12.0*x*y
Trigonometric part [src]
 2      2         
x  + 4*y  - 12*x*y
$$x^{2} - 12 x y + 4 y^{2}$$
x^2 + 4*y^2 - 12*x*y