The perfect square
Let's highlight the perfect square of the square three-member
$$3 y^{2} + \left(x^{2} - 13 x y\right)$$
Let us write down the identical expression
$$3 y^{2} + \left(x^{2} - 13 x y\right) = - \frac{157 y^{2}}{4} + \left(x^{2} - 13 x y + \frac{169 y^{2}}{4}\right)$$
or
$$3 y^{2} + \left(x^{2} - 13 x y\right) = - \frac{157 y^{2}}{4} + \left(x - \frac{13 y}{2}\right)^{2}$$
in the view of the product
$$\left(- \sqrt{\frac{157}{4}} y + \left(x - \frac{13 y}{2}\right)\right) \left(\sqrt{\frac{157}{4}} y + \left(x - \frac{13 y}{2}\right)\right)$$
$$\left(- \frac{\sqrt{157}}{2} y + \left(x - \frac{13 y}{2}\right)\right) \left(\frac{\sqrt{157}}{2} y + \left(x - \frac{13 y}{2}\right)\right)$$
$$\left(x + y \left(- \frac{13}{2} - \frac{\sqrt{157}}{2}\right)\right) \left(x + y \left(- \frac{13}{2} + \frac{\sqrt{157}}{2}\right)\right)$$
$$\left(x + y \left(- \frac{13}{2} - \frac{\sqrt{157}}{2}\right)\right) \left(x + y \left(- \frac{13}{2} + \frac{\sqrt{157}}{2}\right)\right)$$
General simplification
[src]
$$x^{2} - 13 x y + 3 y^{2}$$
/ / _____\\ / / _____\\
| y*\13 - \/ 157 /| | y*\13 + \/ 157 /|
|x - ----------------|*|x - ----------------|
\ 2 / \ 2 /
$$\left(x - \frac{y \left(13 - \sqrt{157}\right)}{2}\right) \left(x - \frac{y \left(\sqrt{157} + 13\right)}{2}\right)$$
(x - y*(13 - sqrt(157))/2)*(x - y*(13 + sqrt(157))/2)
Assemble expression
[src]
$$x^{2} - 13 x y + 3 y^{2}$$
$$x^{2} - 13 x y + 3 y^{2}$$
$$x^{2} - 13 x y + 3 y^{2}$$
$$x^{2} - 13 x y + 3 y^{2}$$
$$x^{2} - 13 x y + 3 y^{2}$$
Rational denominator
[src]
$$x^{2} - 13 x y + 3 y^{2}$$
Combining rational expressions
[src]
$$x \left(x - 13 y\right) + 3 y^{2}$$