Mister Exam

How do you (2tgx)/(1+tg^2x) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
  2*tan(x) 
-----------
       2   
1 + tan (x)
$$\frac{2 \tan{\left(x \right)}}{\tan^{2}{\left(x \right)} + 1}$$
(2*tan(x))/(1 + tan(x)^2)
Fraction decomposition [src]
2*tan(x)/(1 + tan(x)^2)
$$\frac{2 \tan{\left(x \right)}}{\tan^{2}{\left(x \right)} + 1}$$
  2*tan(x) 
-----------
       2   
1 + tan (x)
General simplification [src]
sin(2*x)
$$\sin{\left(2 x \right)}$$
sin(2*x)
Numerical answer [src]
2.0*tan(x)/(1.0 + tan(x)^2)
2.0*tan(x)/(1.0 + tan(x)^2)
Powers [src]
             /   I*x    -I*x\         
         2*I*\- e    + e    /         
--------------------------------------
/                    2\               
|    /   I*x    -I*x\ |               
|    \- e    + e    / | / I*x    -I*x\
|1 - -----------------|*\e    + e    /
|                   2 |               
|     / I*x    -I*x\  |               
\     \e    + e    /  /               
$$\frac{2 i \left(- e^{i x} + e^{- i x}\right)}{\left(- \frac{\left(- e^{i x} + e^{- i x}\right)^{2}}{\left(e^{i x} + e^{- i x}\right)^{2}} + 1\right) \left(e^{i x} + e^{- i x}\right)}$$
2*i*(-exp(i*x) + exp(-i*x))/((1 - (-exp(i*x) + exp(-i*x))^2/(exp(i*x) + exp(-i*x))^2)*(exp(i*x) + exp(-i*x)))
Trigonometric part [src]
      2*sec(x)      
--------------------
/       2   \       
|    sec (x)|       
|1 + -------|*csc(x)
|       2   |       
\    csc (x)/       
$$\frac{2 \sec{\left(x \right)}}{\left(1 + \frac{\sec^{2}{\left(x \right)}}{\csc^{2}{\left(x \right)}}\right) \csc{\left(x \right)}}$$
      1      
-------------
   /      pi\
sec|2*x - --|
   \      2 /
$$\frac{1}{\sec{\left(2 x - \frac{\pi}{2} \right)}}$$
           /    pi\      
      2*cos|x - --|      
           \    2 /      
-------------------------
/       2/    pi\\       
|    cos |x - --||       
|        \    2 /|       
|1 + ------------|*cos(x)
|         2      |       
\      cos (x)   /       
$$\frac{2 \cos{\left(x - \frac{\pi}{2} \right)}}{\left(1 + \frac{\cos^{2}{\left(x - \frac{\pi}{2} \right)}}{\cos^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}$$
         2          
--------------------
/       1   \       
|1 + -------|*cot(x)
|       2   |       
\    cot (x)/       
$$\frac{2}{\left(1 + \frac{1}{\cot^{2}{\left(x \right)}}\right) \cot{\left(x \right)}}$$
sin(2*x)
$$\sin{\left(2 x \right)}$$
      2*sin(x)      
--------------------
/       2   \       
|    sin (x)|       
|1 + -------|*cos(x)
|       2   |       
\    cos (x)/       
$$\frac{2 \sin{\left(x \right)}}{\left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) \cos{\left(x \right)}}$$
   1    
--------
csc(2*x)
$$\frac{1}{\csc{\left(2 x \right)}}$$
           /pi    \      
      2*csc|-- - x|      
           \2     /      
-------------------------
/       2/pi    \\       
|    csc |-- - x||       
|        \2     /|       
|1 + ------------|*csc(x)
|         2      |       
\      csc (x)   /       
$$\frac{2 \csc{\left(- x + \frac{\pi}{2} \right)}}{\left(1 + \frac{\csc^{2}{\left(- x + \frac{\pi}{2} \right)}}{\csc^{2}{\left(x \right)}}\right) \csc{\left(x \right)}}$$
           2*sec(x)           
------------------------------
/         2      \            
|      sec (x)   |    /    pi\
|1 + ------------|*sec|x - --|
|       2/    pi\|    \    2 /
|    sec |x - --||            
\        \    2 //            
$$\frac{2 \sec{\left(x \right)}}{\left(\frac{\sec^{2}{\left(x \right)}}{\sec^{2}{\left(x - \frac{\pi}{2} \right)}} + 1\right) \sec{\left(x - \frac{\pi}{2} \right)}}$$
            2           
       4*sin (x)        
------------------------
/         4   \         
|    4*sin (x)|         
|1 + ---------|*sin(2*x)
|       2     |         
\    sin (2*x)/         
$$\frac{4 \sin^{2}{\left(x \right)}}{\left(\frac{4 \sin^{4}{\left(x \right)}}{\sin^{2}{\left(2 x \right)}} + 1\right) \sin{\left(2 x \right)}}$$
   /      pi\
cos|2*x - --|
   \      2 /
$$\cos{\left(2 x - \frac{\pi}{2} \right)}$$
  2*cot(x) 
-----------
       2   
1 + cot (x)
$$\frac{2 \cot{\left(x \right)}}{\cot^{2}{\left(x \right)} + 1}$$
2*cot(x)/(1 + cot(x)^2)