$$\left(x - 12\right) \left(x + 7\right)$$
Fraction decomposition
[src]
$$\frac{x^{2}}{24} - \frac{5 x}{24} - \frac{7}{2}$$
2
7 5*x x
- - - --- + --
2 24 24
General simplification
[src]
2
7 5*x x
- - - --- + --
2 24 24
$$\frac{x^{2}}{24} - \frac{5 x}{24} - \frac{7}{2}$$
The perfect square
Let's highlight the perfect square of the square three-member
$$\frac{\left(x^{2} - 5 x\right) - 84}{24}$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = \frac{1}{24}$$
$$b = - \frac{5}{24}$$
$$c = - \frac{7}{2}$$
Then
$$m = - \frac{5}{2}$$
$$n = - \frac{361}{96}$$
So,
$$\frac{\left(x - \frac{5}{2}\right)^{2}}{24} - \frac{361}{96}$$
2
7 5*x x
- - - --- + --
2 24 24
$$\frac{x^{2}}{24} - \frac{5 x}{24} - \frac{7}{2}$$
Assemble expression
[src]
2
7 5*x x
- - - --- + --
2 24 24
$$\frac{x^{2}}{24} - \frac{5 x}{24} - \frac{7}{2}$$
Rational denominator
[src]
2
-84 + x - 5*x
--------------
24
$$\frac{x^{2} - 5 x - 84}{24}$$
Combining rational expressions
[src]
7 x*(-5 + x)
- - + ----------
2 24
$$\frac{x \left(x - 5\right)}{24} - \frac{7}{2}$$
-3.5 + 0.0416666666666667*x^2 - 0.208333333333333*x
-3.5 + 0.0416666666666667*x^2 - 0.208333333333333*x
(-12 + x)*(7 + x)
-----------------
24
$$\frac{\left(x - 12\right) \left(x + 7\right)}{24}$$
2
7 5*x x
- - - --- + --
2 24 24
$$\frac{x^{2}}{24} - \frac{5 x}{24} - \frac{7}{2}$$
2
7 5*x x
- - - --- + --
2 24 24
$$\frac{x^{2}}{24} - \frac{5 x}{24} - \frac{7}{2}$$