Mister Exam

How do you 1/(x^4-16) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
   1   
-------
 4     
x  - 16
$$\frac{1}{x^{4} - 16}$$
1/(x^4 - 16)
Fraction decomposition [src]
-1/(8*(4 + x^2)) - 1/(32*(2 + x)) + 1/(32*(-2 + x))
$$- \frac{1}{8 \left(x^{2} + 4\right)} - \frac{1}{32 \left(x + 2\right)} + \frac{1}{32 \left(x - 2\right)}$$
      1            1             1     
- ---------- - ---------- + -----------
    /     2\   32*(2 + x)   32*(-2 + x)
  8*\4 + x /                           
Numerical answer [src]
1/(-16.0 + x^4)
1/(-16.0 + x^4)
Combinatorics [src]
            1            
-------------------------
                 /     2\
(-2 + x)*(2 + x)*\4 + x /
$$\frac{1}{\left(x - 2\right) \left(x + 2\right) \left(x^{2} + 4\right)}$$
1/((-2 + x)*(2 + x)*(4 + x^2))