Mister Exam

Other calculators

Factor -y^2+y-4 squared

An expression to simplify:

The solution

You have entered [src]
   2        
- y  + y - 4
$$\left(- y^{2} + y\right) - 4$$
-y^2 + y - 4
General simplification [src]
          2
-4 + y - y 
$$- y^{2} + y - 4$$
-4 + y - y^2
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- y^{2} + y\right) - 4$$
To do this, let's use the formula
$$a y^{2} + b y + c = a \left(m + y\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 1$$
$$c = -4$$
Then
$$m = - \frac{1}{2}$$
$$n = - \frac{15}{4}$$
So,
$$- \left(y - \frac{1}{2}\right)^{2} - \frac{15}{4}$$
Factorization [src]
/              ____\ /              ____\
|      1   I*\/ 15 | |      1   I*\/ 15 |
|x + - - + --------|*|x + - - - --------|
\      2      2    / \      2      2    /
$$\left(x + \left(- \frac{1}{2} - \frac{\sqrt{15} i}{2}\right)\right) \left(x + \left(- \frac{1}{2} + \frac{\sqrt{15} i}{2}\right)\right)$$
(x - 1/2 + i*sqrt(15)/2)*(x - 1/2 - i*sqrt(15)/2)
Trigonometric part [src]
          2
-4 + y - y 
$$- y^{2} + y - 4$$
-4 + y - y^2
Assemble expression [src]
          2
-4 + y - y 
$$- y^{2} + y - 4$$
-4 + y - y^2
Combinatorics [src]
          2
-4 + y - y 
$$- y^{2} + y - 4$$
-4 + y - y^2
Numerical answer [src]
-4.0 + y - y^2
-4.0 + y - y^2
Combining rational expressions [src]
-4 + y*(1 - y)
$$y \left(1 - y\right) - 4$$
-4 + y*(1 - y)
Rational denominator [src]
          2
-4 + y - y 
$$- y^{2} + y - 4$$
-4 + y - y^2
Common denominator [src]
          2
-4 + y - y 
$$- y^{2} + y - 4$$
-4 + y - y^2
Powers [src]
          2
-4 + y - y 
$$- y^{2} + y - 4$$
-4 + y - y^2