Mister Exam

Factor -y^2-y+2 squared

An expression to simplify:

The solution

You have entered [src]
   2        
- y  - y + 2
$$\left(- y^{2} - y\right) + 2$$
-y^2 - y + 2
Factorization [src]
(x + 2)*(x - 1)
$$\left(x - 1\right) \left(x + 2\right)$$
(x + 2)*(x - 1)
General simplification [src]
         2
2 - y - y 
$$- y^{2} - y + 2$$
2 - y - y^2
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- y^{2} - y\right) + 2$$
To do this, let's use the formula
$$a y^{2} + b y + c = a \left(m + y\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = -1$$
$$c = 2$$
Then
$$m = \frac{1}{2}$$
$$n = \frac{9}{4}$$
So,
$$\frac{9}{4} - \left(y + \frac{1}{2}\right)^{2}$$
Combinatorics [src]
-(-1 + y)*(2 + y)
$$- \left(y - 1\right) \left(y + 2\right)$$
-(-1 + y)*(2 + y)
Common denominator [src]
         2
2 - y - y 
$$- y^{2} - y + 2$$
2 - y - y^2
Powers [src]
         2
2 - y - y 
$$- y^{2} - y + 2$$
2 - y - y^2
Assemble expression [src]
         2
2 - y - y 
$$- y^{2} - y + 2$$
2 - y - y^2
Rational denominator [src]
         2
2 - y - y 
$$- y^{2} - y + 2$$
2 - y - y^2
Trigonometric part [src]
         2
2 - y - y 
$$- y^{2} - y + 2$$
2 - y - y^2
Combining rational expressions [src]
2 + y*(-1 - y)
$$y \left(- y - 1\right) + 2$$
2 + y*(-1 - y)
Numerical answer [src]
2.0 - y - y^2
2.0 - y - y^2