General simplification
[src]
$$- y^{2} - y - 5$$
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- y^{2} - y\right) - 5$$
To do this, let's use the formula
$$a y^{2} + b y + c = a \left(m + y\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = -1$$
$$c = -5$$
Then
$$m = \frac{1}{2}$$
$$n = - \frac{19}{4}$$
So,
$$- \left(y + \frac{1}{2}\right)^{2} - \frac{19}{4}$$
/ ____\ / ____\
| 1 I*\/ 19 | | 1 I*\/ 19 |
|x + - + --------|*|x + - - --------|
\ 2 2 / \ 2 2 /
$$\left(x + \left(\frac{1}{2} - \frac{\sqrt{19} i}{2}\right)\right) \left(x + \left(\frac{1}{2} + \frac{\sqrt{19} i}{2}\right)\right)$$
(x + 1/2 + i*sqrt(19)/2)*(x + 1/2 - i*sqrt(19)/2)
Rational denominator
[src]
$$- y^{2} - y - 5$$
Assemble expression
[src]
$$- y^{2} - y - 5$$
Combining rational expressions
[src]
$$y \left(- y - 1\right) - 5$$