The perfect square
Let's highlight the perfect square of the square three-member
$$x^{2} + \left(- x 5 y - y^{2}\right)$$
Let us write down the identical expression
$$x^{2} + \left(- x 5 y - y^{2}\right) = - \frac{29 y^{2}}{4} + \left(x^{2} - 5 x y + \frac{25 y^{2}}{4}\right)$$
or
$$x^{2} + \left(- x 5 y - y^{2}\right) = - \frac{29 y^{2}}{4} + \left(x - \frac{5 y}{2}\right)^{2}$$
in the view of the product
$$\left(- \sqrt{\frac{29}{4}} y + \left(x - \frac{5 y}{2}\right)\right) \left(\sqrt{\frac{29}{4}} y + \left(x - \frac{5 y}{2}\right)\right)$$
$$\left(- \frac{\sqrt{29}}{2} y + \left(x - \frac{5 y}{2}\right)\right) \left(\frac{\sqrt{29}}{2} y + \left(x - \frac{5 y}{2}\right)\right)$$
$$\left(x + y \left(- \frac{5}{2} + \frac{\sqrt{29}}{2}\right)\right) \left(x + y \left(- \frac{\sqrt{29}}{2} - \frac{5}{2}\right)\right)$$
$$\left(x + y \left(- \frac{5}{2} + \frac{\sqrt{29}}{2}\right)\right) \left(x + y \left(- \frac{\sqrt{29}}{2} - \frac{5}{2}\right)\right)$$
General simplification
[src]
$$x^{2} - 5 x y - y^{2}$$
/ / ____\\ / / ____\\
| y*\5 - \/ 29 /| | y*\5 + \/ 29 /|
|x - --------------|*|x - --------------|
\ 2 / \ 2 /
$$\left(x - \frac{y \left(5 - \sqrt{29}\right)}{2}\right) \left(x - \frac{y \left(5 + \sqrt{29}\right)}{2}\right)$$
(x - y*(5 - sqrt(29))/2)*(x - y*(5 + sqrt(29))/2)
$$x^{2} - 5 x y - y^{2}$$
$$x^{2} - 5 x y - y^{2}$$
Rational denominator
[src]
$$x^{2} - 5 x y - y^{2}$$
$$x^{2} - 5 x y - y^{2}$$
Combining rational expressions
[src]
$$x^{2} + y \left(- 5 x - y\right)$$
$$x^{2} - 5 x y - y^{2}$$
Assemble expression
[src]
$$x^{2} - 5 x y - y^{2}$$