Mister Exam

Other calculators

Factor -y^4+2*y^2-1 squared

An expression to simplify:

The solution

You have entered [src]
   4      2    
- y  + 2*y  - 1
$$\left(- y^{4} + 2 y^{2}\right) - 1$$
-y^4 + 2*y^2 - 1
General simplification [src]
      4      2
-1 - y  + 2*y 
$$- y^{4} + 2 y^{2} - 1$$
-1 - y^4 + 2*y^2
Factorization [src]
(x + 1)*(x - 1)
$$\left(x - 1\right) \left(x + 1\right)$$
(x + 1)*(x - 1)
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- y^{4} + 2 y^{2}\right) - 1$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 2$$
$$c = -1$$
Then
$$m = -1$$
$$n = 0$$
So,
$$- \left(y^{2} - 1\right)^{2}$$
Numerical answer [src]
-1.0 - y^4 + 2.0*y^2
-1.0 - y^4 + 2.0*y^2
Trigonometric part [src]
      4      2
-1 - y  + 2*y 
$$- y^{4} + 2 y^{2} - 1$$
-1 - y^4 + 2*y^2
Combinatorics [src]
        2         2
-(1 + y) *(-1 + y) 
$$- \left(y - 1\right)^{2} \left(y + 1\right)^{2}$$
-(1 + y)^2*(-1 + y)^2
Powers [src]
      4      2
-1 - y  + 2*y 
$$- y^{4} + 2 y^{2} - 1$$
-1 - y^4 + 2*y^2
Combining rational expressions [src]
      2 /     2\
-1 + y *\2 - y /
$$y^{2} \left(2 - y^{2}\right) - 1$$
-1 + y^2*(2 - y^2)
Common denominator [src]
      4      2
-1 - y  + 2*y 
$$- y^{4} + 2 y^{2} - 1$$
-1 - y^4 + 2*y^2
Assemble expression [src]
      4      2
-1 - y  + 2*y 
$$- y^{4} + 2 y^{2} - 1$$
-1 - y^4 + 2*y^2
Rational denominator [src]
      4      2
-1 - y  + 2*y 
$$- y^{4} + 2 y^{2} - 1$$
-1 - y^4 + 2*y^2