General simplification
[src]
$$- y^{4} + 2 y^{2} - 1$$
$$\left(x - 1\right) \left(x + 1\right)$$
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- y^{4} + 2 y^{2}\right) - 1$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 2$$
$$c = -1$$
Then
$$m = -1$$
$$n = 0$$
So,
$$- \left(y^{2} - 1\right)^{2}$$
$$- y^{4} + 2 y^{2} - 1$$
$$- \left(y - 1\right)^{2} \left(y + 1\right)^{2}$$
$$- y^{4} + 2 y^{2} - 1$$
Combining rational expressions
[src]
$$y^{2} \left(2 - y^{2}\right) - 1$$
$$- y^{4} + 2 y^{2} - 1$$
Assemble expression
[src]
$$- y^{4} + 2 y^{2} - 1$$
Rational denominator
[src]
$$- y^{4} + 2 y^{2} - 1$$