Mister Exam

Other calculators

Factor -y^4+4*y^2+8 squared

An expression to simplify:

The solution

You have entered [src]
   4      2    
- y  + 4*y  + 8
$$\left(- y^{4} + 4 y^{2}\right) + 8$$
-y^4 + 4*y^2 + 8
General simplification [src]
     4      2
8 - y  + 4*y 
$$- y^{4} + 4 y^{2} + 8$$
8 - y^4 + 4*y^2
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- y^{4} + 4 y^{2}\right) + 8$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 4$$
$$c = 8$$
Then
$$m = -2$$
$$n = 12$$
So,
$$12 - \left(y^{2} - 2\right)^{2}$$
Factorization [src]
/         ______________\ /         ______________\ /       _____________\ /       _____________\
|        /          ___ | |        /          ___ | |      /         ___ | |      /         ___ |
\x + I*\/  -2 + 2*\/ 3  /*\x - I*\/  -2 + 2*\/ 3  /*\x + \/  2 + 2*\/ 3  /*\x - \/  2 + 2*\/ 3  /
$$\left(x - i \sqrt{-2 + 2 \sqrt{3}}\right) \left(x + i \sqrt{-2 + 2 \sqrt{3}}\right) \left(x + \sqrt{2 + 2 \sqrt{3}}\right) \left(x - \sqrt{2 + 2 \sqrt{3}}\right)$$
(((x + i*sqrt(-2 + 2*sqrt(3)))*(x - i*sqrt(-2 + 2*sqrt(3))))*(x + sqrt(2 + 2*sqrt(3))))*(x - sqrt(2 + 2*sqrt(3)))
Trigonometric part [src]
     4      2
8 - y  + 4*y 
$$- y^{4} + 4 y^{2} + 8$$
8 - y^4 + 4*y^2
Powers [src]
     4      2
8 - y  + 4*y 
$$- y^{4} + 4 y^{2} + 8$$
8 - y^4 + 4*y^2
Rational denominator [src]
     4      2
8 - y  + 4*y 
$$- y^{4} + 4 y^{2} + 8$$
8 - y^4 + 4*y^2
Numerical answer [src]
8.0 - y^4 + 4.0*y^2
8.0 - y^4 + 4.0*y^2
Combinatorics [src]
     4      2
8 - y  + 4*y 
$$- y^{4} + 4 y^{2} + 8$$
8 - y^4 + 4*y^2
Assemble expression [src]
     4      2
8 - y  + 4*y 
$$- y^{4} + 4 y^{2} + 8$$
8 - y^4 + 4*y^2
Common denominator [src]
     4      2
8 - y  + 4*y 
$$- y^{4} + 4 y^{2} + 8$$
8 - y^4 + 4*y^2
Combining rational expressions [src]
     2 /     2\
8 + y *\4 - y /
$$y^{2} \left(4 - y^{2}\right) + 8$$
8 + y^2*(4 - y^2)