Mister Exam

Factor -y^4-15*y^2+4 squared

An expression to simplify:

The solution

You have entered [src]
   4       2    
- y  - 15*y  + 4
$$\left(- y^{4} - 15 y^{2}\right) + 4$$
-y^4 - 15*y^2 + 4
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- y^{4} - 15 y^{2}\right) + 4$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = -15$$
$$c = 4$$
Then
$$m = \frac{15}{2}$$
$$n = \frac{241}{4}$$
So,
$$\frac{241}{4} - \left(y^{2} + \frac{15}{2}\right)^{2}$$
Factorization [src]
/           ______________\ /           ______________\ /         ________________\ /         ________________\
|          /        _____ | |          /        _____ | |        /          _____ | |        /          _____ |
|         /  15   \/ 241  | |         /  15   \/ 241  | |       /    15   \/ 241  | |       /    15   \/ 241  |
|x + I*  /   -- + ------- |*|x - I*  /   -- + ------- |*|x +   /   - -- + ------- |*|x -   /   - -- + ------- |
\      \/    2       2    / \      \/    2       2    / \    \/      2       2    / \    \/      2       2    /
$$\left(x - i \sqrt{\frac{15}{2} + \frac{\sqrt{241}}{2}}\right) \left(x + i \sqrt{\frac{15}{2} + \frac{\sqrt{241}}{2}}\right) \left(x + \sqrt{- \frac{15}{2} + \frac{\sqrt{241}}{2}}\right) \left(x - \sqrt{- \frac{15}{2} + \frac{\sqrt{241}}{2}}\right)$$
(((x + i*sqrt(15/2 + sqrt(241)/2))*(x - i*sqrt(15/2 + sqrt(241)/2)))*(x + sqrt(-15/2 + sqrt(241)/2)))*(x - sqrt(-15/2 + sqrt(241)/2))
General simplification [src]
     4       2
4 - y  - 15*y 
$$- y^{4} - 15 y^{2} + 4$$
4 - y^4 - 15*y^2
Numerical answer [src]
4.0 - y^4 - 15.0*y^2
4.0 - y^4 - 15.0*y^2
Assemble expression [src]
     4       2
4 - y  - 15*y 
$$- y^{4} - 15 y^{2} + 4$$
4 - y^4 - 15*y^2
Trigonometric part [src]
     4       2
4 - y  - 15*y 
$$- y^{4} - 15 y^{2} + 4$$
4 - y^4 - 15*y^2
Common denominator [src]
     4       2
4 - y  - 15*y 
$$- y^{4} - 15 y^{2} + 4$$
4 - y^4 - 15*y^2
Combinatorics [src]
     4       2
4 - y  - 15*y 
$$- y^{4} - 15 y^{2} + 4$$
4 - y^4 - 15*y^2
Powers [src]
     4       2
4 - y  - 15*y 
$$- y^{4} - 15 y^{2} + 4$$
4 - y^4 - 15*y^2
Combining rational expressions [src]
     2 /       2\
4 + y *\-15 - y /
$$y^{2} \left(- y^{2} - 15\right) + 4$$
4 + y^2*(-15 - y^2)
Rational denominator [src]
     4       2
4 - y  - 15*y 
$$- y^{4} - 15 y^{2} + 4$$
4 - y^4 - 15*y^2