General simplification
[src]
$$- 8 a^{2} - a x - x^{2}$$
The perfect square
Let's highlight the perfect square of the square three-member
$$- 8 a^{2} + \left(- a x - x^{2}\right)$$
Let us write down the identical expression
$$- 8 a^{2} + \left(- a x - x^{2}\right) = - \frac{31 x^{2}}{32} + \left(- 8 a^{2} - a x - \frac{x^{2}}{32}\right)$$
or
$$- 8 a^{2} + \left(- a x - x^{2}\right) = - \frac{31 x^{2}}{32} - \left(2 \sqrt{2} a + \frac{\sqrt{2} x}{8}\right)^{2}$$
/ / ____\\ / / ____\\
| x*\-1 + I*\/ 31 /| | x*\1 + I*\/ 31 /|
|a - -----------------|*|a + ----------------|
\ 16 / \ 16 /
$$\left(a - \frac{x \left(-1 + \sqrt{31} i\right)}{16}\right) \left(a + \frac{x \left(1 + \sqrt{31} i\right)}{16}\right)$$
(a - x*(-1 + i*sqrt(31))/16)*(a + x*(1 + i*sqrt(31))/16)
Combining rational expressions
[src]
$$- 8 a^{2} + x \left(- a - x\right)$$
$$- 8 a^{2} - a x - x^{2}$$
Assemble expression
[src]
$$- 8 a^{2} - a x - x^{2}$$
$$- 8 a^{2} - a x - x^{2}$$
$$- 8 a^{2} - a x - x^{2}$$
Rational denominator
[src]
$$- 8 a^{2} - a x - x^{2}$$
$$- 8 a^{2} - a x - x^{2}$$