Fraction decomposition
[src]
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
1 + 12*p
-------------------
3 2
3 + p + 2*p + 3*p
General simplification
[src]
1 + 12*p
-------------------
3 2
3 + p + 2*p + 3*p
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
(1.0 + 12.0*p)/(3.0 + p^3 + 2.0*p + 3.0*p^2)
(1.0 + 12.0*p)/(3.0 + p^3 + 2.0*p + 3.0*p^2)
1 + 12*p
-------------------
3 2
3 + p + 2*p + 3*p
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
Assemble expression
[src]
1 + 12*p
-------------------
3 2
3 + p + 2*p + 3*p
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
Rational denominator
[src]
1 + 12*p
-------------------
3 2
3 + p + 2*p + 3*p
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
1 + 12*p
-------------------
3 2
3 + p + 2*p + 3*p
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
Combining rational expressions
[src]
1 + 12*p
---------------------
3 + p*(2 + p*(3 + p))
$$\frac{12 p + 1}{p \left(p \left(p + 3\right) + 2\right) + 3}$$
(1 + 12*p)/(3 + p*(2 + p*(3 + p)))
1 + 12*p
-------------------
3 2
3 + p + 2*p + 3*p
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
1 + 12*p
-------------------
3 2
3 + p + 2*p + 3*p
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)