Mister Exam

Other calculators

How do you (12*p+1)/(p^3+3*p^2+2*p+3) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
      12*p + 1     
-------------------
 3      2          
p  + 3*p  + 2*p + 3
$$\frac{12 p + 1}{\left(2 p + \left(p^{3} + 3 p^{2}\right)\right) + 3}$$
(12*p + 1)/(p^3 + 3*p^2 + 2*p + 3)
Fraction decomposition [src]
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
      1 + 12*p     
-------------------
     3            2
3 + p  + 2*p + 3*p 
General simplification [src]
      1 + 12*p     
-------------------
     3            2
3 + p  + 2*p + 3*p 
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
Numerical answer [src]
(1.0 + 12.0*p)/(3.0 + p^3 + 2.0*p + 3.0*p^2)
(1.0 + 12.0*p)/(3.0 + p^3 + 2.0*p + 3.0*p^2)
Powers [src]
      1 + 12*p     
-------------------
     3            2
3 + p  + 2*p + 3*p 
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
Assemble expression [src]
      1 + 12*p     
-------------------
     3            2
3 + p  + 2*p + 3*p 
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
Rational denominator [src]
      1 + 12*p     
-------------------
     3            2
3 + p  + 2*p + 3*p 
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
Common denominator [src]
      1 + 12*p     
-------------------
     3            2
3 + p  + 2*p + 3*p 
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
Combining rational expressions [src]
       1 + 12*p      
---------------------
3 + p*(2 + p*(3 + p))
$$\frac{12 p + 1}{p \left(p \left(p + 3\right) + 2\right) + 3}$$
(1 + 12*p)/(3 + p*(2 + p*(3 + p)))
Combinatorics [src]
      1 + 12*p     
-------------------
     3            2
3 + p  + 2*p + 3*p 
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)
Trigonometric part [src]
      1 + 12*p     
-------------------
     3            2
3 + p  + 2*p + 3*p 
$$\frac{12 p + 1}{p^{3} + 3 p^{2} + 2 p + 3}$$
(1 + 12*p)/(3 + p^3 + 2*p + 3*p^2)