Mister Exam

Other calculators

Factor -t^4+10*t^2+1 squared

An expression to simplify:

The solution

You have entered [src]
   4       2    
- t  + 10*t  + 1
$$\left(- t^{4} + 10 t^{2}\right) + 1$$
-t^4 + 10*t^2 + 1
General simplification [src]
     4       2
1 - t  + 10*t 
$$- t^{4} + 10 t^{2} + 1$$
1 - t^4 + 10*t^2
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- t^{4} + 10 t^{2}\right) + 1$$
To do this, let's use the formula
$$a t^{4} + b t^{2} + c = a \left(m + t^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 10$$
$$c = 1$$
Then
$$m = -5$$
$$n = 26$$
So,
$$26 - \left(t^{2} - 5\right)^{2}$$
Factorization [src]
/         _____________\ /         _____________\ /       ____________\ /       ____________\
|        /        ____ | |        /        ____ | |      /       ____ | |      /       ____ |
\t + I*\/  -5 + \/ 26  /*\t - I*\/  -5 + \/ 26  /*\t + \/  5 + \/ 26  /*\t - \/  5 + \/ 26  /
$$\left(t - i \sqrt{-5 + \sqrt{26}}\right) \left(t + i \sqrt{-5 + \sqrt{26}}\right) \left(t + \sqrt{5 + \sqrt{26}}\right) \left(t - \sqrt{5 + \sqrt{26}}\right)$$
(((t + i*sqrt(-5 + sqrt(26)))*(t - i*sqrt(-5 + sqrt(26))))*(t + sqrt(5 + sqrt(26))))*(t - sqrt(5 + sqrt(26)))
Numerical answer [src]
1.0 - t^4 + 10.0*t^2
1.0 - t^4 + 10.0*t^2
Common denominator [src]
     4       2
1 - t  + 10*t 
$$- t^{4} + 10 t^{2} + 1$$
1 - t^4 + 10*t^2
Powers [src]
     4       2
1 - t  + 10*t 
$$- t^{4} + 10 t^{2} + 1$$
1 - t^4 + 10*t^2
Rational denominator [src]
     4       2
1 - t  + 10*t 
$$- t^{4} + 10 t^{2} + 1$$
1 - t^4 + 10*t^2
Assemble expression [src]
     4       2
1 - t  + 10*t 
$$- t^{4} + 10 t^{2} + 1$$
1 - t^4 + 10*t^2
Combinatorics [src]
     4       2
1 - t  + 10*t 
$$- t^{4} + 10 t^{2} + 1$$
1 - t^4 + 10*t^2
Trigonometric part [src]
     4       2
1 - t  + 10*t 
$$- t^{4} + 10 t^{2} + 1$$
1 - t^4 + 10*t^2
Combining rational expressions [src]
     2 /      2\
1 + t *\10 - t /
$$t^{2} \left(10 - t^{2}\right) + 1$$
1 + t^2*(10 - t^2)