General simplification
[src]
$$8 q^{2} + 5 q y - 9 y^{2}$$
The perfect square
Let's highlight the perfect square of the square three-member
$$8 q^{2} + \left(q 5 y - 9 y^{2}\right)$$
Let us write down the identical expression
$$8 q^{2} + \left(q 5 y - 9 y^{2}\right) = - \frac{313 y^{2}}{32} + \left(8 q^{2} + 5 q y + \frac{25 y^{2}}{32}\right)$$
or
$$8 q^{2} + \left(q 5 y - 9 y^{2}\right) = - \frac{313 y^{2}}{32} + \left(2 \sqrt{2} q + \frac{5 \sqrt{2} y}{8}\right)^{2}$$
in the view of the product
$$\left(- \sqrt{\frac{313}{32}} y + \left(2 \sqrt{2} q + \frac{5 \sqrt{2}}{8} y\right)\right) \left(\sqrt{\frac{313}{32}} y + \left(2 \sqrt{2} q + \frac{5 \sqrt{2}}{8} y\right)\right)$$
$$\left(- \frac{\sqrt{626}}{8} y + \left(2 \sqrt{2} q + \frac{5 \sqrt{2}}{8} y\right)\right) \left(\frac{\sqrt{626}}{8} y + \left(2 \sqrt{2} q + \frac{5 \sqrt{2}}{8} y\right)\right)$$
$$\left(2 \sqrt{2} q + y \left(\frac{5 \sqrt{2}}{8} + \frac{\sqrt{626}}{8}\right)\right) \left(2 \sqrt{2} q + y \left(- \frac{\sqrt{626}}{8} + \frac{5 \sqrt{2}}{8}\right)\right)$$
$$\left(2 \sqrt{2} q + y \left(\frac{5 \sqrt{2}}{8} + \frac{\sqrt{626}}{8}\right)\right) \left(2 \sqrt{2} q + y \left(- \frac{\sqrt{626}}{8} + \frac{5 \sqrt{2}}{8}\right)\right)$$
/ / _____\\ / / _____\\
| y*\-5 + \/ 313 /| | y*\5 + \/ 313 /|
|q - ----------------|*|q + ---------------|
\ 16 / \ 16 /
$$\left(q - \frac{y \left(-5 + \sqrt{313}\right)}{16}\right) \left(q + \frac{y \left(5 + \sqrt{313}\right)}{16}\right)$$
(q - y*(-5 + sqrt(313))/16)*(q + y*(5 + sqrt(313))/16)
8.0*q^2 - 9.0*y^2 + 5.0*q*y
8.0*q^2 - 9.0*y^2 + 5.0*q*y
$$8 q^{2} + 5 q y - 9 y^{2}$$
Assemble expression
[src]
$$8 q^{2} + 5 q y - 9 y^{2}$$
Combining rational expressions
[src]
$$8 q^{2} + y \left(5 q - 9 y\right)$$
Rational denominator
[src]
$$8 q^{2} + 5 q y - 9 y^{2}$$
$$8 q^{2} + 5 q y - 9 y^{2}$$
$$8 q^{2} + 5 q y - 9 y^{2}$$
$$8 q^{2} + 5 q y - 9 y^{2}$$