Mister Exam

Other calculators

Factor -9*y^2+5*y*q+8*q^2 squared

An expression to simplify:

The solution

You have entered [src]
     2              2
- 9*y  + 5*y*q + 8*q 
$$8 q^{2} + \left(q 5 y - 9 y^{2}\right)$$
-9*y^2 + (5*y)*q + 8*q^2
General simplification [src]
     2      2        
- 9*y  + 8*q  + 5*q*y
$$8 q^{2} + 5 q y - 9 y^{2}$$
-9*y^2 + 8*q^2 + 5*q*y
The perfect square
Let's highlight the perfect square of the square three-member
$$8 q^{2} + \left(q 5 y - 9 y^{2}\right)$$
Let us write down the identical expression
$$8 q^{2} + \left(q 5 y - 9 y^{2}\right) = - \frac{313 y^{2}}{32} + \left(8 q^{2} + 5 q y + \frac{25 y^{2}}{32}\right)$$
or
$$8 q^{2} + \left(q 5 y - 9 y^{2}\right) = - \frac{313 y^{2}}{32} + \left(2 \sqrt{2} q + \frac{5 \sqrt{2} y}{8}\right)^{2}$$
in the view of the product
$$\left(- \sqrt{\frac{313}{32}} y + \left(2 \sqrt{2} q + \frac{5 \sqrt{2}}{8} y\right)\right) \left(\sqrt{\frac{313}{32}} y + \left(2 \sqrt{2} q + \frac{5 \sqrt{2}}{8} y\right)\right)$$
$$\left(- \frac{\sqrt{626}}{8} y + \left(2 \sqrt{2} q + \frac{5 \sqrt{2}}{8} y\right)\right) \left(\frac{\sqrt{626}}{8} y + \left(2 \sqrt{2} q + \frac{5 \sqrt{2}}{8} y\right)\right)$$
$$\left(2 \sqrt{2} q + y \left(\frac{5 \sqrt{2}}{8} + \frac{\sqrt{626}}{8}\right)\right) \left(2 \sqrt{2} q + y \left(- \frac{\sqrt{626}}{8} + \frac{5 \sqrt{2}}{8}\right)\right)$$
$$\left(2 \sqrt{2} q + y \left(\frac{5 \sqrt{2}}{8} + \frac{\sqrt{626}}{8}\right)\right) \left(2 \sqrt{2} q + y \left(- \frac{\sqrt{626}}{8} + \frac{5 \sqrt{2}}{8}\right)\right)$$
Factorization [src]
/      /       _____\\ /      /      _____\\
|    y*\-5 + \/ 313 /| |    y*\5 + \/ 313 /|
|q - ----------------|*|q + ---------------|
\           16       / \           16      /
$$\left(q - \frac{y \left(-5 + \sqrt{313}\right)}{16}\right) \left(q + \frac{y \left(5 + \sqrt{313}\right)}{16}\right)$$
(q - y*(-5 + sqrt(313))/16)*(q + y*(5 + sqrt(313))/16)
Numerical answer [src]
8.0*q^2 - 9.0*y^2 + 5.0*q*y
8.0*q^2 - 9.0*y^2 + 5.0*q*y
Trigonometric part [src]
     2      2        
- 9*y  + 8*q  + 5*q*y
$$8 q^{2} + 5 q y - 9 y^{2}$$
-9*y^2 + 8*q^2 + 5*q*y
Assemble expression [src]
     2      2        
- 9*y  + 8*q  + 5*q*y
$$8 q^{2} + 5 q y - 9 y^{2}$$
-9*y^2 + 8*q^2 + 5*q*y
Combining rational expressions [src]
   2                 
8*q  + y*(-9*y + 5*q)
$$8 q^{2} + y \left(5 q - 9 y\right)$$
8*q^2 + y*(-9*y + 5*q)
Rational denominator [src]
     2      2        
- 9*y  + 8*q  + 5*q*y
$$8 q^{2} + 5 q y - 9 y^{2}$$
-9*y^2 + 8*q^2 + 5*q*y
Common denominator [src]
     2      2        
- 9*y  + 8*q  + 5*q*y
$$8 q^{2} + 5 q y - 9 y^{2}$$
-9*y^2 + 8*q^2 + 5*q*y
Powers [src]
     2      2        
- 9*y  + 8*q  + 5*q*y
$$8 q^{2} + 5 q y - 9 y^{2}$$
-9*y^2 + 8*q^2 + 5*q*y
Combinatorics [src]
     2      2        
- 9*y  + 8*q  + 5*q*y
$$8 q^{2} + 5 q y - 9 y^{2}$$
-9*y^2 + 8*q^2 + 5*q*y