Mister Exam

Factor b^2+b+6 squared

An expression to simplify:

The solution

You have entered [src]
 2        
b  + b + 6
$$\left(b^{2} + b\right) + 6$$
b^2 + b + 6
Factorization [src]
/            ____\ /            ____\
|    1   I*\/ 23 | |    1   I*\/ 23 |
|b + - + --------|*|b + - - --------|
\    2      2    / \    2      2    /
$$\left(b + \left(\frac{1}{2} - \frac{\sqrt{23} i}{2}\right)\right) \left(b + \left(\frac{1}{2} + \frac{\sqrt{23} i}{2}\right)\right)$$
(b + 1/2 + i*sqrt(23)/2)*(b + 1/2 - i*sqrt(23)/2)
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(b^{2} + b\right) + 6$$
To do this, let's use the formula
$$a b^{2} + b^{2} + c = a \left(b + m\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = 1$$
$$c = 6$$
Then
$$m = \frac{1}{2}$$
$$n = \frac{23}{4}$$
So,
$$\left(b + \frac{1}{2}\right)^{2} + \frac{23}{4}$$
General simplification [src]
         2
6 + b + b 
$$b^{2} + b + 6$$
6 + b + b^2
Combinatorics [src]
         2
6 + b + b 
$$b^{2} + b + 6$$
6 + b + b^2
Rational denominator [src]
         2
6 + b + b 
$$b^{2} + b + 6$$
6 + b + b^2
Assemble expression [src]
         2
6 + b + b 
$$b^{2} + b + 6$$
6 + b + b^2
Numerical answer [src]
6.0 + b + b^2
6.0 + b + b^2
Combining rational expressions [src]
6 + b*(1 + b)
$$b \left(b + 1\right) + 6$$
6 + b*(1 + b)
Powers [src]
         2
6 + b + b 
$$b^{2} + b + 6$$
6 + b + b^2
Common denominator [src]
         2
6 + b + b 
$$b^{2} + b + 6$$
6 + b + b^2
Trigonometric part [src]
         2
6 + b + b 
$$b^{2} + b + 6$$
6 + b + b^2