Mister Exam

Factor -q^2-q-11 squared

An expression to simplify:

The solution

You have entered [src]
   2         
- q  - q - 11
$$\left(- q^{2} - q\right) - 11$$
-q^2 - q - 11
General simplification [src]
           2
-11 - q - q 
$$- q^{2} - q - 11$$
-11 - q - q^2
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- q^{2} - q\right) - 11$$
To do this, let's use the formula
$$a q^{2} + b q + c = a \left(m + q\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = -1$$
$$c = -11$$
Then
$$m = \frac{1}{2}$$
$$n = - \frac{43}{4}$$
So,
$$- \left(q + \frac{1}{2}\right)^{2} - \frac{43}{4}$$
Factorization [src]
/            ____\ /            ____\
|    1   I*\/ 43 | |    1   I*\/ 43 |
|q + - + --------|*|q + - - --------|
\    2      2    / \    2      2    /
$$\left(q + \left(\frac{1}{2} - \frac{\sqrt{43} i}{2}\right)\right) \left(q + \left(\frac{1}{2} + \frac{\sqrt{43} i}{2}\right)\right)$$
(q + 1/2 + i*sqrt(43)/2)*(q + 1/2 - i*sqrt(43)/2)
Numerical answer [src]
-11.0 - q - q^2
-11.0 - q - q^2
Trigonometric part [src]
           2
-11 - q - q 
$$- q^{2} - q - 11$$
-11 - q - q^2
Combinatorics [src]
           2
-11 - q - q 
$$- q^{2} - q - 11$$
-11 - q - q^2
Rational denominator [src]
           2
-11 - q - q 
$$- q^{2} - q - 11$$
-11 - q - q^2
Common denominator [src]
           2
-11 - q - q 
$$- q^{2} - q - 11$$
-11 - q - q^2
Powers [src]
           2
-11 - q - q 
$$- q^{2} - q - 11$$
-11 - q - q^2
Combining rational expressions [src]
-11 + q*(-1 - q)
$$q \left(- q - 1\right) - 11$$
-11 + q*(-1 - q)
Assemble expression [src]
           2
-11 - q - q 
$$- q^{2} - q - 11$$
-11 - q - q^2