Mister Exam

Factor b^2-b+3 squared

An expression to simplify:

The solution

You have entered [src]
 2        
b  - b + 3
$$\left(b^{2} - b\right) + 3$$
b^2 - b + 3
General simplification [src]
     2    
3 + b  - b
$$b^{2} - b + 3$$
3 + b^2 - b
Factorization [src]
/              ____\ /              ____\
|      1   I*\/ 11 | |      1   I*\/ 11 |
|b + - - + --------|*|b + - - - --------|
\      2      2    / \      2      2    /
$$\left(b + \left(- \frac{1}{2} - \frac{\sqrt{11} i}{2}\right)\right) \left(b + \left(- \frac{1}{2} + \frac{\sqrt{11} i}{2}\right)\right)$$
(b - 1/2 + i*sqrt(11)/2)*(b - 1/2 - i*sqrt(11)/2)
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(b^{2} - b\right) + 3$$
To do this, let's use the formula
$$a b^{2} + b^{2} + c = a \left(b + m\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -1$$
$$c = 3$$
Then
$$m = - \frac{1}{2}$$
$$n = \frac{11}{4}$$
So,
$$\left(b - \frac{1}{2}\right)^{2} + \frac{11}{4}$$
Numerical answer [src]
3.0 + b^2 - b
3.0 + b^2 - b
Rational denominator [src]
     2    
3 + b  - b
$$b^{2} - b + 3$$
3 + b^2 - b
Combining rational expressions [src]
3 + b*(-1 + b)
$$b \left(b - 1\right) + 3$$
3 + b*(-1 + b)
Assemble expression [src]
     2    
3 + b  - b
$$b^{2} - b + 3$$
3 + b^2 - b
Common denominator [src]
     2    
3 + b  - b
$$b^{2} - b + 3$$
3 + b^2 - b
Trigonometric part [src]
     2    
3 + b  - b
$$b^{2} - b + 3$$
3 + b^2 - b
Powers [src]
     2    
3 + b  - b
$$b^{2} - b + 3$$
3 + b^2 - b
Combinatorics [src]
     2    
3 + b  - b
$$b^{2} - b + 3$$
3 + b^2 - b