Mister Exam

Other calculators

How do you (x^2-3*x+4)/(x-3) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
 2          
x  - 3*x + 4
------------
   x - 3    
$$\frac{\left(x^{2} - 3 x\right) + 4}{x - 3}$$
(x^2 - 3*x + 4)/(x - 3)
General simplification [src]
     2      
4 + x  - 3*x
------------
   -3 + x   
$$\frac{x^{2} - 3 x + 4}{x - 3}$$
(4 + x^2 - 3*x)/(-3 + x)
Fraction decomposition [src]
x + 4/(-3 + x)
$$x + \frac{4}{x - 3}$$
      4   
x + ------
    -3 + x
Numerical answer [src]
(4.0 + x^2 - 3.0*x)/(-3.0 + x)
(4.0 + x^2 - 3.0*x)/(-3.0 + x)
Powers [src]
     2      
4 + x  - 3*x
------------
   -3 + x   
$$\frac{x^{2} - 3 x + 4}{x - 3}$$
(4 + x^2 - 3*x)/(-3 + x)
Rational denominator [src]
     2      
4 + x  - 3*x
------------
   -3 + x   
$$\frac{x^{2} - 3 x + 4}{x - 3}$$
(4 + x^2 - 3*x)/(-3 + x)
Combinatorics [src]
     2      
4 + x  - 3*x
------------
   -3 + x   
$$\frac{x^{2} - 3 x + 4}{x - 3}$$
(4 + x^2 - 3*x)/(-3 + x)
Trigonometric part [src]
     2      
4 + x  - 3*x
------------
   -3 + x   
$$\frac{x^{2} - 3 x + 4}{x - 3}$$
(4 + x^2 - 3*x)/(-3 + x)
Combining rational expressions [src]
4 + x*(-3 + x)
--------------
    -3 + x    
$$\frac{x \left(x - 3\right) + 4}{x - 3}$$
(4 + x*(-3 + x))/(-3 + x)
Assemble expression [src]
     2      
4 + x  - 3*x
------------
   -3 + x   
$$\frac{x^{2} - 3 x + 4}{x - 3}$$
(4 + x^2 - 3*x)/(-3 + x)
Common denominator [src]
      4   
x + ------
    -3 + x
$$x + \frac{4}{x - 3}$$
x + 4/(-3 + x)