Mister Exam

Other calculators

How do you (s+1)/(3*s+6)*(5*s+1)/(s+3)-((1/10)*s+1)/((3/10)*s+1) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
 s + 1               s     
-------*(5*s + 1)    -- + 1
3*s + 6              10    
----------------- - -------
      s + 3         3*s    
                    --- + 1
                     10    
$$\frac{\frac{s + 1}{3 s + 6} \left(5 s + 1\right)}{s + 3} - \frac{\frac{s}{10} + 1}{\frac{3 s}{10} + 1}$$
(((s + 1)/(3*s + 6))*(5*s + 1))/(s + 3) - (s/10 + 1)/(3*s/10 + 1)
General simplification [src]
                   3       2
-170 - 105*s + 12*s  + 23*s 
----------------------------
  /        3       2       \
3*\60 + 3*s  + 25*s  + 68*s/
$$\frac{12 s^{3} + 23 s^{2} - 105 s - 170}{3 \left(3 s^{3} + 25 s^{2} + 68 s + 60\right)}$$
(-170 - 105*s + 12*s^3 + 23*s^2)/(3*(60 + 3*s^3 + 25*s^2 + 68*s))
Fraction decomposition [src]
4/3 + 3/(2 + s) - 28/(3*(3 + s)) - 20/(3*(10 + 3*s))
$$\frac{4}{3} - \frac{20}{3 \left(3 s + 10\right)} - \frac{28}{3 \left(s + 3\right)} + \frac{3}{s + 2}$$
4     3         28           20     
- + ----- - --------- - ------------
3   2 + s   3*(3 + s)   3*(10 + 3*s)
Rational denominator [src]
(1 + s)*(1 + 5*s)*(100 + 30*s) + (-100 - 10*s)*(3 + s)*(6 + 3*s)
----------------------------------------------------------------
                 (3 + s)*(6 + 3*s)*(100 + 30*s)                 
$$\frac{\left(- 10 s - 100\right) \left(s + 3\right) \left(3 s + 6\right) + \left(s + 1\right) \left(5 s + 1\right) \left(30 s + 100\right)}{\left(s + 3\right) \left(3 s + 6\right) \left(30 s + 100\right)}$$
((1 + s)*(1 + 5*s)*(100 + 30*s) + (-100 - 10*s)*(3 + s)*(6 + 3*s))/((3 + s)*(6 + 3*s)*(100 + 30*s))
Combining rational expressions [src]
(1 + s)*(1 + 5*s)*(10 + 3*s) - 3*(2 + s)*(3 + s)*(10 + s)
---------------------------------------------------------
               3*(2 + s)*(3 + s)*(10 + 3*s)              
$$\frac{\left(s + 1\right) \left(3 s + 10\right) \left(5 s + 1\right) - 3 \left(s + 2\right) \left(s + 3\right) \left(s + 10\right)}{3 \left(s + 2\right) \left(s + 3\right) \left(3 s + 10\right)}$$
((1 + s)*(1 + 5*s)*(10 + 3*s) - 3*(2 + s)*(3 + s)*(10 + s))/(3*(2 + s)*(3 + s)*(10 + 3*s))
Powers [src]
       s                     
   1 + --                    
       10   (1 + s)*(1 + 5*s)
- ------- + -----------------
      3*s   (3 + s)*(6 + 3*s)
  1 + ---                    
       10                    
$$- \frac{\frac{s}{10} + 1}{\frac{3 s}{10} + 1} + \frac{\left(s + 1\right) \left(5 s + 1\right)}{\left(s + 3\right) \left(3 s + 6\right)}$$
     s                     
-1 - --                    
     10   (1 + s)*(1 + 5*s)
------- + -----------------
    3*s   (3 + s)*(6 + 3*s)
1 + ---                    
     10                    
$$\frac{- \frac{s}{10} - 1}{\frac{3 s}{10} + 1} + \frac{\left(s + 1\right) \left(5 s + 1\right)}{\left(s + 3\right) \left(3 s + 6\right)}$$
(-1 - s/10)/(1 + 3*s/10) + (1 + s)*(1 + 5*s)/((3 + s)*(6 + 3*s))
Numerical answer [src]
-(1.0 + 0.1*s)/(1.0 + 0.3*s) + (1.0 + s)*(1.0 + 5.0*s)/((3.0 + s)*(6.0 + 3.0*s))
-(1.0 + 0.1*s)/(1.0 + 0.3*s) + (1.0 + s)*(1.0 + 5.0*s)/((3.0 + s)*(6.0 + 3.0*s))
Assemble expression [src]
       s                     
   1 + --                    
       10   (1 + s)*(1 + 5*s)
- ------- + -----------------
      3*s   (3 + s)*(6 + 3*s)
  1 + ---                    
       10                    
$$- \frac{\frac{s}{10} + 1}{\frac{3 s}{10} + 1} + \frac{\left(s + 1\right) \left(5 s + 1\right)}{\left(s + 3\right) \left(3 s + 6\right)}$$
-(1 + s/10)/(1 + 3*s/10) + (1 + s)*(1 + 5*s)/((3 + s)*(6 + 3*s))
Common denominator [src]
                 2            
4      410 + 77*s  + 377*s    
- - --------------------------
3            3       2        
    180 + 9*s  + 75*s  + 204*s
$$- \frac{77 s^{2} + 377 s + 410}{9 s^{3} + 75 s^{2} + 204 s + 180} + \frac{4}{3}$$
4/3 - (410 + 77*s^2 + 377*s)/(180 + 9*s^3 + 75*s^2 + 204*s)
Trigonometric part [src]
       s                     
   1 + --                    
       10   (1 + s)*(1 + 5*s)
- ------- + -----------------
      3*s   (3 + s)*(6 + 3*s)
  1 + ---                    
       10                    
$$- \frac{\frac{s}{10} + 1}{\frac{3 s}{10} + 1} + \frac{\left(s + 1\right) \left(5 s + 1\right)}{\left(s + 3\right) \left(3 s + 6\right)}$$
-(1 + s/10)/(1 + 3*s/10) + (1 + s)*(1 + 5*s)/((3 + s)*(6 + 3*s))
Combinatorics [src]
                   3       2
-170 - 105*s + 12*s  + 23*s 
----------------------------
3*(2 + s)*(3 + s)*(10 + 3*s)
$$\frac{12 s^{3} + 23 s^{2} - 105 s - 170}{3 \left(s + 2\right) \left(s + 3\right) \left(3 s + 10\right)}$$
(-170 - 105*s + 12*s^3 + 23*s^2)/(3*(2 + s)*(3 + s)*(10 + 3*s))