Mister Exam
Lang:
EN
EN
ES
RU
Other calculators
Complex numbers step by step
Regular Equations Step by Step
Mathematical logic step by step
How to use it?
How do you in partial fractions?
:
y*(y+((1/(x+(x^2+y^2)^(1/2))*(1+(2*x/(2*(x^2+y^2)^(1/2)))))))-(y/(x^2+y^2)^(1/2))
(4x^2-3x+1)/(x^3+x)
(2x^2-5)/(x^4-5x^2+6)
x^2/(x+4)
Factor polynomial
:
z^3-6*z^2+5*z+12
z^3+5*z^2+2*z+10
z^3+5*z^2+17*z+13
y^2/y-8-64/y-8
Least common denominator
:
(((y-y)/(3*y-3))+(1/(y-1)))/((y+1)/3)+(2/(y^2-1))
x/y+y/x
(x/y^2+x*y+x-y/x^2-x*y)/(y^2/x^3-x*y^2+1/x-y)
(factorial(5)/(m*(m+1)))*(factorial(m+1)/(factorial(m-1)*factorial(3)))
Factor squared
:
-y^4+y^2+2
-y^4-8*y^2-2
y^4-9*y^2-2
y^4-7*y^2-9
Integral of d{x}
:
x^2/(x+4)
Graphing y =
:
x^2/(x+4)
Identical expressions
x^ two /(x+ four)
x squared divide by (x plus 4)
x to the power of two divide by (x plus four)
x2/(x+4)
x2/x+4
x²/(x+4)
x to the power of 2/(x+4)
x^2/x+4
x^2 divide by (x+4)
Similar expressions
x^2/(x-4)
Expression simplification
/
Fraction Decomposition into the simple
/
x^2/(x+4)
How do you x^2/(x+4) in partial fractions?
An expression to simplify:
Decompose fraction
The solution
You have entered
[src]
2 x ----- x + 4
$$\frac{x^{2}}{x + 4}$$
x^2/(x + 4)
Fraction decomposition
[src]
-4 + x + 16/(4 + x)
$$x - 4 + \frac{16}{x + 4}$$
16 -4 + x + ----- 4 + x
Numerical answer
[src]
x^2/(4.0 + x)
x^2/(4.0 + x)
Common denominator
[src]
16 -4 + x + ----- 4 + x
$$x - 4 + \frac{16}{x + 4}$$
-4 + x + 16/(4 + x)