Mister Exam

Other calculators

How do you ((x-0.15)*(x-0.2)*(x-0.25))/((0.1-0.15)*(0.1-0.2)*(0.1-0.25)) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
     (x - 3/20)*(x - 1/5)*(x - 1/4)    
---------------------------------------
(1/10 - 3/20)*(1/10 - 1/5)*(1/10 - 1/4)
$$\frac{\left(x - \frac{1}{5}\right) \left(x - \frac{3}{20}\right) \left(x - \frac{1}{4}\right)}{\left(- \frac{1}{5} + \frac{1}{10}\right) \left(- \frac{3}{20} + \frac{1}{10}\right) \left(- \frac{1}{4} + \frac{1}{10}\right)}$$
(((x - 3/20)*(x - 1/5))*(x - 1/4))/((((1/10 - 3/20)*(1/10 - 1/5))*(1/10 - 1/4)))
General simplification [src]
                    3        
          2   4000*x    470*x
10 + 800*x  - ------- - -----
                 3        3  
$$- \frac{4000 x^{3}}{3} + 800 x^{2} - \frac{470 x}{3} + 10$$
10 + 800*x^2 - 4000*x^3/3 - 470*x/3
Factorization [src]
(x - 3/20)*(x - 1/5)*(x - 1/4)
$$\left(x - \frac{1}{5}\right) \left(x - \frac{3}{20}\right) \left(x - \frac{1}{4}\right)$$
((x - 3/20)*(x - 1/5))*(x - 1/4)
Fraction decomposition [src]
10 + 800*x^2 - 4000*x^3/3 - 470*x/3
$$- \frac{4000 x^{3}}{3} + 800 x^{2} - \frac{470 x}{3} + 10$$
                    3        
          2   4000*x    470*x
10 + 800*x  - ------- - -----
                 3        3  
Assemble expression [src]
-4000*(-3/20 + x)*(-1/4 + x)*(-1/5 + x)
---------------------------------------
                   3                   
$$- \frac{4000 \left(x - \frac{1}{4}\right) \left(x - \frac{1}{5}\right) \left(x - \frac{3}{20}\right)}{3}$$
-4000*(-3/20 + x)*(-1/4 + x)*(-1/5 + x)/3
Numerical answer [src]
-1333.33333333333*(-0.25 + x)*(-0.2 + x)*(-0.15 + x)
-1333.33333333333*(-0.25 + x)*(-0.2 + x)*(-0.15 + x)
Expand expression [src]
     (x - 3/20)*(x - 1/4)*(x - 1/5)    
---------------------------------------
(1/10 - 3/20)*(1/10 - 1/4)*(1/10 - 1/5)
$$\frac{\left(x - \frac{1}{4}\right) \left(x - \frac{1}{5}\right) \left(x - \frac{3}{20}\right)}{\left(- \frac{1}{4} + \frac{1}{10}\right) \left(- \frac{1}{5} + \frac{1}{10}\right) \left(- \frac{3}{20} + \frac{1}{10}\right)}$$
(x - 3/20)*(x - 1/4)*(x - 1/5)/((1/10 - 3/20)*(1/10 - 1/4)*(1/10 - 1/5))
Common denominator [src]
                    3        
          2   4000*x    470*x
10 + 800*x  - ------- - -----
                 3        3  
$$- \frac{4000 x^{3}}{3} + 800 x^{2} - \frac{470 x}{3} + 10$$
10 + 800*x^2 - 4000*x^3/3 - 470*x/3
Combinatorics [src]
-10*(-1 + 4*x)*(-1 + 5*x)*(-3 + 20*x)
-------------------------------------
                  3                  
$$- \frac{10 \left(4 x - 1\right) \left(5 x - 1\right) \left(20 x - 3\right)}{3}$$
-10*(-1 + 4*x)*(-1 + 5*x)*(-3 + 20*x)/3
Combining rational expressions [src]
-10*(-1 + 4*x)*(-1 + 5*x)*(-3 + 20*x)
-------------------------------------
                  3                  
$$- \frac{10 \left(4 x - 1\right) \left(5 x - 1\right) \left(20 x - 3\right)}{3}$$
-10*(-1 + 4*x)*(-1 + 5*x)*(-3 + 20*x)/3
Trigonometric part [src]
-4000*(-3/20 + x)*(-1/4 + x)*(-1/5 + x)
---------------------------------------
                   3                   
$$- \frac{4000 \left(x - \frac{1}{4}\right) \left(x - \frac{1}{5}\right) \left(x - \frac{3}{20}\right)}{3}$$
-4000*(-3/20 + x)*(-1/4 + x)*(-1/5 + x)/3
Powers [src]
-4000*(-3/20 + x)*(-1/4 + x)*(-1/5 + x)
---------------------------------------
                   3                   
$$- \frac{4000 \left(x - \frac{1}{4}\right) \left(x - \frac{1}{5}\right) \left(x - \frac{3}{20}\right)}{3}$$
-4000*(-3/20 + x)*(-1/4 + x)*(-1/5 + x)/3
Rational denominator [src]
-10*(-1 + 4*x)*(-1 + 5*x)*(-3 + 20*x)
-------------------------------------
                  3                  
$$- \frac{10 \left(4 x - 1\right) \left(5 x - 1\right) \left(20 x - 3\right)}{3}$$
-10*(-1 + 4*x)*(-1 + 5*x)*(-3 + 20*x)/3