Mister Exam

Other calculators

Factor y^4-15*y^2+1 squared

An expression to simplify:

The solution

You have entered [src]
 4       2    
y  - 15*y  + 1
$$\left(y^{4} - 15 y^{2}\right) + 1$$
y^4 - 15*y^2 + 1
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(y^{4} - 15 y^{2}\right) + 1$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -15$$
$$c = 1$$
Then
$$m = - \frac{15}{2}$$
$$n = - \frac{221}{4}$$
So,
$$\left(y^{2} - \frac{15}{2}\right)^{2} - \frac{221}{4}$$
Factorization [src]
/         ______________\ /         ______________\ /         ______________\ /         ______________\
|        /        _____ | |        /        _____ | |        /        _____ | |        /        _____ |
|       /  15   \/ 221  | |       /  15   \/ 221  | |       /  15   \/ 221  | |       /  15   \/ 221  |
|x +   /   -- - ------- |*|x -   /   -- - ------- |*|x +   /   -- + ------- |*|x -   /   -- + ------- |
\    \/    2       2    / \    \/    2       2    / \    \/    2       2    / \    \/    2       2    /
$$\left(x - \sqrt{\frac{15}{2} - \frac{\sqrt{221}}{2}}\right) \left(x + \sqrt{\frac{15}{2} - \frac{\sqrt{221}}{2}}\right) \left(x + \sqrt{\frac{\sqrt{221}}{2} + \frac{15}{2}}\right) \left(x - \sqrt{\frac{\sqrt{221}}{2} + \frac{15}{2}}\right)$$
(((x + sqrt(15/2 - sqrt(221)/2))*(x - sqrt(15/2 - sqrt(221)/2)))*(x + sqrt(15/2 + sqrt(221)/2)))*(x - sqrt(15/2 + sqrt(221)/2))
General simplification [src]
     4       2
1 + y  - 15*y 
$$y^{4} - 15 y^{2} + 1$$
1 + y^4 - 15*y^2
Numerical answer [src]
1.0 + y^4 - 15.0*y^2
1.0 + y^4 - 15.0*y^2
Rational denominator [src]
     4       2
1 + y  - 15*y 
$$y^{4} - 15 y^{2} + 1$$
1 + y^4 - 15*y^2
Common denominator [src]
     4       2
1 + y  - 15*y 
$$y^{4} - 15 y^{2} + 1$$
1 + y^4 - 15*y^2
Trigonometric part [src]
     4       2
1 + y  - 15*y 
$$y^{4} - 15 y^{2} + 1$$
1 + y^4 - 15*y^2
Assemble expression [src]
     4       2
1 + y  - 15*y 
$$y^{4} - 15 y^{2} + 1$$
1 + y^4 - 15*y^2
Combinatorics [src]
     4       2
1 + y  - 15*y 
$$y^{4} - 15 y^{2} + 1$$
1 + y^4 - 15*y^2
Powers [src]
     4       2
1 + y  - 15*y 
$$y^{4} - 15 y^{2} + 1$$
1 + y^4 - 15*y^2
Combining rational expressions [src]
     2 /       2\
1 + y *\-15 + y /
$$y^{2} \left(y^{2} - 15\right) + 1$$
1 + y^2*(-15 + y^2)