Fraction decomposition
[src]
1/(17*(-1 + 4*u)) + 4/(17*(4 + u))
$$\frac{1}{17 \left(4 u - 1\right)} + \frac{4}{17 \left(u + 4\right)}$$
1 4
------------- + ----------
17*(-1 + 4*u) 17*(4 + u)
General simplification
[src]
u
----------------
2
-4 + 4*u + 15*u
$$\frac{u}{4 u^{2} + 15 u - 4}$$
Combining rational expressions
[src]
u*(1 + 4*u)*(16 + u*(-4 + u))
-----------------------------
/ 2\ / 3\
\-1 + 16*u /*\64 + u /
$$\frac{u \left(4 u + 1\right) \left(u \left(u - 4\right) + 16\right)}{\left(16 u^{2} - 1\right) \left(u^{3} + 64\right)}$$
u*(1 + 4*u)*(16 + u*(-4 + u))/((-1 + 16*u^2)*(64 + u^3))
(u + 4.0*u^2)*(16.0 + u^2 - 4.0*u)/((64.0 + u^3)*(-1.0 + 16.0*u^2))
(u + 4.0*u^2)*(16.0 + u^2 - 4.0*u)/((64.0 + u^3)*(-1.0 + 16.0*u^2))
/ 2\ / 2 \
\u + 4*u /*\16 + u - 4*u/
--------------------------
/ 2\ / 3\
\-1 + 16*u /*\64 + u /
$$\frac{\left(4 u^{2} + u\right) \left(u^{2} - 4 u + 16\right)}{\left(16 u^{2} - 1\right) \left(u^{3} + 64\right)}$$
(u + 4*u^2)*(16 + u^2 - 4*u)/((-1 + 16*u^2)*(64 + u^3))
u
------------------
(-1 + 4*u)*(4 + u)
$$\frac{u}{\left(u + 4\right) \left(4 u - 1\right)}$$
Rational denominator
[src]
/ 2\ / 2 \
\u + 4*u /*\16 + u - 4*u/
--------------------------
/ 2\ / 3\
\-1 + 16*u /*\64 + u /
$$\frac{\left(4 u^{2} + u\right) \left(u^{2} - 4 u + 16\right)}{\left(16 u^{2} - 1\right) \left(u^{3} + 64\right)}$$
(u + 4*u^2)*(16 + u^2 - 4*u)/((-1 + 16*u^2)*(64 + u^3))
Assemble expression
[src]
/ 2\ / 2 \
\u + 4*u /*\16 + u - 4*u/
--------------------------
/ 2\ / 3\
\-1 + 16*u /*\64 + u /
$$\frac{\left(4 u^{2} + u\right) \left(u^{2} - 4 u + 16\right)}{\left(16 u^{2} - 1\right) \left(u^{3} + 64\right)}$$
(u + 4*u^2)*(16 + u^2 - 4*u)/((-1 + 16*u^2)*(64 + u^3))
u
----------------
2
-4 + 4*u + 15*u
$$\frac{u}{4 u^{2} + 15 u - 4}$$
/ 2\ / 2 \
\u + 4*u /*\16 + u - 4*u/
--------------------------
/ 2\ / 3\
\-1 + 16*u /*\64 + u /
$$\frac{\left(4 u^{2} + u\right) \left(u^{2} - 4 u + 16\right)}{\left(16 u^{2} - 1\right) \left(u^{3} + 64\right)}$$
(u + 4*u^2)*(16 + u^2 - 4*u)/((-1 + 16*u^2)*(64 + u^3))