Mister Exam

Other calculators

How do you 2*x/(x^2-1)-2*x*(x^2+1)/(x^2-1)^2 in partial fractions?

An expression to simplify:

The solution

You have entered [src]
             / 2    \
 2*x     2*x*\x  + 1/
------ - ------------
 2                2  
x  - 1    / 2    \   
          \x  - 1/   
$$\frac{2 x}{x^{2} - 1} - \frac{2 x \left(x^{2} + 1\right)}{\left(x^{2} - 1\right)^{2}}$$
(2*x)/(x^2 - 1) - (2*x)*(x^2 + 1)/(x^2 - 1)^2
Fraction decomposition [src]
(1 + x)^(-2) - 1/(-1 + x)^2
$$\frac{1}{\left(x + 1\right)^{2}} - \frac{1}{\left(x - 1\right)^{2}}$$
   1           1    
-------- - ---------
       2           2
(1 + x)    (-1 + x) 
General simplification [src]
   -4*x   
----------
         2
/      2\ 
\-1 + x / 
$$- \frac{4 x}{\left(x^{2} - 1\right)^{2}}$$
-4*x/(-1 + x^2)^2
Numerical answer [src]
2.0*x/(-1.0 + x^2) - 2.0*x*(1.0 + x^2)/(-1.0 + x^2)^2
2.0*x/(-1.0 + x^2) - 2.0*x*(1.0 + x^2)/(-1.0 + x^2)^2
Rational denominator [src]
             2                         
    /      2\        /     2\ /      2\
2*x*\-1 + x /  - 2*x*\1 + x /*\-1 + x /
---------------------------------------
                        3              
               /      2\               
               \-1 + x /               
$$\frac{2 x \left(x^{2} - 1\right)^{2} - 2 x \left(x^{2} - 1\right) \left(x^{2} + 1\right)}{\left(x^{2} - 1\right)^{3}}$$
(2*x*(-1 + x^2)^2 - 2*x*(1 + x^2)*(-1 + x^2))/(-1 + x^2)^3
Common denominator [src]
     -4*x    
-------------
     4      2
1 + x  - 2*x 
$$- \frac{4 x}{x^{4} - 2 x^{2} + 1}$$
-4*x/(1 + x^4 - 2*x^2)
Combinatorics [src]
       -4*x       
------------------
       2         2
(1 + x) *(-1 + x) 
$$- \frac{4 x}{\left(x - 1\right)^{2} \left(x + 1\right)^{2}}$$
-4*x/((1 + x)^2*(-1 + x)^2)
Combining rational expressions [src]
   -4*x   
----------
         2
/      2\ 
\-1 + x / 
$$- \frac{4 x}{\left(x^{2} - 1\right)^{2}}$$
-4*x/(-1 + x^2)^2