Fraction decomposition
[src]
(1 + x)^(-2) - 1/(-1 + x)^2
$$\frac{1}{\left(x + 1\right)^{2}} - \frac{1}{\left(x - 1\right)^{2}}$$
1 1
-------- - ---------
2 2
(1 + x) (-1 + x)
General simplification
[src]
-4*x
----------
2
/ 2\
\-1 + x /
$$- \frac{4 x}{\left(x^{2} - 1\right)^{2}}$$
2.0*x/(-1.0 + x^2) - 2.0*x*(1.0 + x^2)/(-1.0 + x^2)^2
2.0*x/(-1.0 + x^2) - 2.0*x*(1.0 + x^2)/(-1.0 + x^2)^2
Rational denominator
[src]
2
/ 2\ / 2\ / 2\
2*x*\-1 + x / - 2*x*\1 + x /*\-1 + x /
---------------------------------------
3
/ 2\
\-1 + x /
$$\frac{2 x \left(x^{2} - 1\right)^{2} - 2 x \left(x^{2} - 1\right) \left(x^{2} + 1\right)}{\left(x^{2} - 1\right)^{3}}$$
(2*x*(-1 + x^2)^2 - 2*x*(1 + x^2)*(-1 + x^2))/(-1 + x^2)^3
-4*x
-------------
4 2
1 + x - 2*x
$$- \frac{4 x}{x^{4} - 2 x^{2} + 1}$$
-4*x
------------------
2 2
(1 + x) *(-1 + x)
$$- \frac{4 x}{\left(x - 1\right)^{2} \left(x + 1\right)^{2}}$$
-4*x/((1 + x)^2*(-1 + x)^2)
Combining rational expressions
[src]
-4*x
----------
2
/ 2\
\-1 + x /
$$- \frac{4 x}{\left(x^{2} - 1\right)^{2}}$$