Mister Exam

Other calculators

How do you (4x(x+sqrt(x^2-1)^2))/((x+(sqrtx^2-1))^4-1) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
    /               2\
    |       ________ |
    |      /  2      |
4*x*\x + \/  x  - 1  /
----------------------
                4     
/         2    \      
|      ___     |      
\x + \/ x   - 1/  - 1 
$$\frac{4 x \left(x + \left(\sqrt{x^{2} - 1}\right)^{2}\right)}{\left(x + \left(\left(\sqrt{x}\right)^{2} - 1\right)\right)^{4} - 1}$$
((4*x)*(x + (sqrt(x^2 - 1))^2))/((x + (sqrt(x))^2 - 1)^4 - 1)
Fraction decomposition [src]
1/(2*(-1 + x)) - (-2 + x)/(2*(1 - 2*x + 2*x^2))
$$- \frac{x - 2}{2 \left(2 x^{2} - 2 x + 1\right)} + \frac{1}{2 \left(x - 1\right)}$$
    1              -2 + x      
---------- - ------------------
2*(-1 + x)     /             2\
             2*\1 - 2*x + 2*x /
General simplification [src]
    /          2\
4*x*\-1 + x + x /
-----------------
                4
 -1 + (-1 + 2*x) 
$$\frac{4 x \left(x^{2} + x - 1\right)}{\left(2 x - 1\right)^{4} - 1}$$
4*x*(-1 + x + x^2)/(-1 + (-1 + 2*x)^4)
Numerical answer [src]
4.0*x*(x + (-1.0 + x^2)^1.0)/(-1.0 + (-1.0 + x + x^1.0)^4)
4.0*x*(x + (-1.0 + x^2)^1.0)/(-1.0 + (-1.0 + x + x^1.0)^4)
Trigonometric part [src]
    /          2\
4*x*\-1 + x + x /
-----------------
                4
 -1 + (-1 + 2*x) 
$$\frac{4 x \left(x^{2} + x - 1\right)}{\left(2 x - 1\right)^{4} - 1}$$
4*x*(-1 + x + x^2)/(-1 + (-1 + 2*x)^4)
Combining rational expressions [src]
    /          2\
4*x*\-1 + x + x /
-----------------
                4
 -1 + (-1 + 2*x) 
$$\frac{4 x \left(x^{2} + x - 1\right)}{\left(2 x - 1\right)^{4} - 1}$$
4*x*(-1 + x + x^2)/(-1 + (-1 + 2*x)^4)
Assemble expression [src]
    /          2\
4*x*\-1 + x + x /
-----------------
                4
 -1 + (-1 + 2*x) 
$$\frac{4 x \left(x^{2} + x - 1\right)}{\left(2 x - 1\right)^{4} - 1}$$
4*x*(-1 + x + x^2)/(-1 + (-1 + 2*x)^4)
Rational denominator [src]
               2      
     -1 + x + x       
----------------------
        2      3      
-2 - 8*x  + 4*x  + 6*x
$$\frac{x^{2} + x - 1}{4 x^{3} - 8 x^{2} + 6 x - 2}$$
(-1 + x + x^2)/(-2 - 8*x^2 + 4*x^3 + 6*x)
Powers [src]
    /          2\
4*x*\-1 + x + x /
-----------------
                4
 -1 + (-1 + 2*x) 
$$\frac{4 x \left(x^{2} + x - 1\right)}{\left(2 x - 1\right)^{4} - 1}$$
4*x*(-1 + x + x^2)/(-1 + (-1 + 2*x)^4)
Common denominator [src]
               2      
     -1 + x + x       
----------------------
        2      3      
-2 - 8*x  + 4*x  + 6*x
$$\frac{x^{2} + x - 1}{4 x^{3} - 8 x^{2} + 6 x - 2}$$
(-1 + x + x^2)/(-2 - 8*x^2 + 4*x^3 + 6*x)
Combinatorics [src]
                  2        
        -1 + x + x         
---------------------------
           /             2\
2*(-1 + x)*\1 - 2*x + 2*x /
$$\frac{x^{2} + x - 1}{2 \left(x - 1\right) \left(2 x^{2} - 2 x + 1\right)}$$
(-1 + x + x^2)/(2*(-1 + x)*(1 - 2*x + 2*x^2))