Mister Exam

Other calculators

How do you 1/(x^2-1) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
  1   
------
 2    
x  - 1
$$\frac{1}{x^{2} - 1}$$
1/(x^2 - 1)
Fraction decomposition [src]
1/(2*(-1 + x)) - 1/(2*(1 + x))
$$- \frac{1}{2 \left(x + 1\right)} + \frac{1}{2 \left(x - 1\right)}$$
    1            1    
---------- - ---------
2*(-1 + x)   2*(1 + x)
Combinatorics [src]
       1        
----------------
(1 + x)*(-1 + x)
$$\frac{1}{\left(x - 1\right) \left(x + 1\right)}$$
1/((1 + x)*(-1 + x))
Numerical answer [src]
1/(-1.0 + x^2)
1/(-1.0 + x^2)