oo / | | 1 | ------- dx | 4 | x - 16 | / 2
Integral(1/(x^4 - 16), (x, 2, oo))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=4, context=1/(x**2 + 4), symbol=x), True), (ArccothRule(a=1, b=1, c=4, context=1/(x**2 + 4), symbol=x), False), (ArctanhRule(a=1, b=1, c=4, context=1/(x**2 + 4), symbol=x), False)], context=1/(x**2 + 4), symbol=x)
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ /x\ | atan|-| | 1 \2/ log(2 + x) log(-2 + x) | ------- dx = C - ------- - ---------- + ----------- | 4 16 32 32 | x - 16 | /
Use the examples entering the upper and lower limits of integration.