Mister Exam

Other calculators

Integral of 1/(x^4-16) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo           
  /           
 |            
 |     1      
 |  ------- dx
 |   4        
 |  x  - 16   
 |            
/             
2             
$$\int\limits_{2}^{\infty} \frac{1}{x^{4} - 16}\, dx$$
Integral(1/(x^4 - 16), (x, 2, oo))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

        PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=4, context=1/(x**2 + 4), symbol=x), True), (ArccothRule(a=1, b=1, c=4, context=1/(x**2 + 4), symbol=x), False), (ArctanhRule(a=1, b=1, c=4, context=1/(x**2 + 4), symbol=x), False)], context=1/(x**2 + 4), symbol=x)

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                     /x\                           
 |                  atan|-|                           
 |    1                 \2/   log(2 + x)   log(-2 + x)
 | ------- dx = C - ------- - ---------- + -----------
 |  4                  16         32            32    
 | x  - 16                                            
 |                                                    
/                                                     
$$\int \frac{1}{x^{4} - 16}\, dx = C + \frac{\log{\left(x - 2 \right)}}{32} - \frac{\log{\left(x + 2 \right)}}{32} - \frac{\operatorname{atan}{\left(\frac{x}{2} \right)}}{16}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo

    Use the examples entering the upper and lower limits of integration.