Mister Exam

Factor polynomial z^3+1-i

An expression to simplify:

The solution

You have entered [src]
 3        
z  + 1 - I
$$\left(z^{3} + 1\right) - i$$
z^3 + 1 - i
Factorization [src]
/       2/3      2/3\ /     2/3      2/3    2/3   ___      2/3   ___\ /     2/3      2/3    2/3   ___      2/3   ___\
|      2      I*2   | |    2      I*2      2   *\/ 3    I*2   *\/ 3 | |    2      I*2      2   *\/ 3    I*2   *\/ 3 |
|x + - ---- - ------|*|x + ---- + ------ - ---------- + ------------|*|x + ---- + ------ + ---------- - ------------|
\       2       2   / \     4       4          4             4      / \     4       4          4             4      /
$$\left(x + \left(- \frac{2^{\frac{2}{3}}}{2} - \frac{2^{\frac{2}{3}} i}{2}\right)\right) \left(x + \left(- \frac{2^{\frac{2}{3}} \sqrt{3}}{4} + \frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} i}{4} + \frac{2^{\frac{2}{3}} \sqrt{3} i}{4}\right)\right) \left(x + \left(\frac{2^{\frac{2}{3}}}{4} + \frac{2^{\frac{2}{3}} \sqrt{3}}{4} - \frac{2^{\frac{2}{3}} \sqrt{3} i}{4} + \frac{2^{\frac{2}{3}} i}{4}\right)\right)$$
((x - 2^(2/3)/2 - i*2^(2/3)/2)*(x + 2^(2/3)/4 + i*2^(2/3)/4 - 2^(2/3)*sqrt(3)/4 + i*2^(2/3)*sqrt(3)/4))*(x + 2^(2/3)/4 + i*2^(2/3)/4 + 2^(2/3)*sqrt(3)/4 - i*2^(2/3)*sqrt(3)/4)
General simplification [src]
     3    
1 + z  - I
$$z^{3} + 1 - i$$
1 + z^3 - i
Trigonometric part [src]
     3    
1 + z  - I
$$z^{3} + 1 - i$$
1 + z^3 - i
Rational denominator [src]
     3    
1 + z  - I
$$z^{3} + 1 - i$$
1 + z^3 - i
Numerical answer [src]
1.0 + z^3 - i
1.0 + z^3 - i
Assemble expression [src]
     3    
1 + z  - I
$$z^{3} + 1 - i$$
1 + z^3 - i
Combining rational expressions [src]
     3    
1 + z  - I
$$z^{3} + 1 - i$$
1 + z^3 - i
Common denominator [src]
     3    
1 + z  - I
$$z^{3} + 1 - i$$
1 + z^3 - i
Powers [src]
     3    
1 + z  - I
$$z^{3} + 1 - i$$
1 + z^3 - i
Combinatorics [src]
     3    
1 + z  - I
$$z^{3} + 1 - i$$
1 + z^3 - i