Mister Exam

Other calculators

Factor polynomial y^3-5*y^2-2*y+16

An expression to simplify:

The solution

You have entered [src]
 3      2           
y  - 5*y  - 2*y + 16
$$\left(- 2 y + \left(y^{3} - 5 y^{2}\right)\right) + 16$$
y^3 - 5*y^2 - 2*y + 16
Factorization [src]
        /            ____\ /            ____\
        |      3   \/ 41 | |      3   \/ 41 |
(x - 2)*|x + - - + ------|*|x + - - - ------|
        \      2     2   / \      2     2   /
$$\left(x - 2\right) \left(x + \left(- \frac{3}{2} + \frac{\sqrt{41}}{2}\right)\right) \left(x + \left(- \frac{\sqrt{41}}{2} - \frac{3}{2}\right)\right)$$
((x - 2)*(x - 3/2 + sqrt(41)/2))*(x - 3/2 - sqrt(41)/2)
General simplification [src]
      3      2      
16 + y  - 5*y  - 2*y
$$y^{3} - 5 y^{2} - 2 y + 16$$
16 + y^3 - 5*y^2 - 2*y
Common denominator [src]
      3      2      
16 + y  - 5*y  - 2*y
$$y^{3} - 5 y^{2} - 2 y + 16$$
16 + y^3 - 5*y^2 - 2*y
Trigonometric part [src]
      3      2      
16 + y  - 5*y  - 2*y
$$y^{3} - 5 y^{2} - 2 y + 16$$
16 + y^3 - 5*y^2 - 2*y
Combining rational expressions [src]
16 + y*(-2 + y*(-5 + y))
$$y \left(y \left(y - 5\right) - 2\right) + 16$$
16 + y*(-2 + y*(-5 + y))
Combinatorics [src]
         /      2      \
(-2 + y)*\-8 + y  - 3*y/
$$\left(y - 2\right) \left(y^{2} - 3 y - 8\right)$$
(-2 + y)*(-8 + y^2 - 3*y)
Numerical answer [src]
16.0 + y^3 - 2.0*y - 5.0*y^2
16.0 + y^3 - 2.0*y - 5.0*y^2
Rational denominator [src]
      3      2      
16 + y  - 5*y  - 2*y
$$y^{3} - 5 y^{2} - 2 y + 16$$
16 + y^3 - 5*y^2 - 2*y
Powers [src]
      3      2      
16 + y  - 5*y  - 2*y
$$y^{3} - 5 y^{2} - 2 y + 16$$
16 + y^3 - 5*y^2 - 2*y
Assemble expression [src]
      3      2      
16 + y  - 5*y  - 2*y
$$y^{3} - 5 y^{2} - 2 y + 16$$
16 + y^3 - 5*y^2 - 2*y