Mister Exam

Factor polynomial y^4-16

An expression to simplify:

The solution

You have entered [src]
 4     
y  - 16
$$y^{4} - 16$$
y^4 - 16
Factorization [src]
(x + 2)*(x - 2)*(x + 2*I)*(x - 2*I)
$$\left(x - 2\right) \left(x + 2\right) \left(x + 2 i\right) \left(x - 2 i\right)$$
(((x + 2)*(x - 2))*(x + 2*i))*(x - 2*i)
Numerical answer [src]
-16.0 + y^4
-16.0 + y^4
Combinatorics [src]
                 /     2\
(-2 + y)*(2 + y)*\4 + y /
$$\left(y - 2\right) \left(y + 2\right) \left(y^{2} + 4\right)$$
(-2 + y)*(2 + y)*(4 + y^2)