Mister Exam

Other calculators

Factor polynomial x^2-24*x+144

An expression to simplify:

The solution

You have entered [src]
 2             
x  - 24*x + 144
$$\left(x^{2} - 24 x\right) + 144$$
x^2 - 24*x + 144
Factorization [src]
x - 12
$$x - 12$$
x - 12
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(x^{2} - 24 x\right) + 144$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -24$$
$$c = 144$$
Then
$$m = -12$$
$$n = 0$$
So,
$$\left(x - 12\right)^{2}$$
General simplification [src]
       2       
144 + x  - 24*x
$$x^{2} - 24 x + 144$$
144 + x^2 - 24*x
Assemble expression [src]
       2       
144 + x  - 24*x
$$x^{2} - 24 x + 144$$
144 + x^2 - 24*x
Numerical answer [src]
144.0 + x^2 - 24.0*x
144.0 + x^2 - 24.0*x
Combining rational expressions [src]
144 + x*(-24 + x)
$$x \left(x - 24\right) + 144$$
144 + x*(-24 + x)
Trigonometric part [src]
       2       
144 + x  - 24*x
$$x^{2} - 24 x + 144$$
144 + x^2 - 24*x
Rational denominator [src]
       2       
144 + x  - 24*x
$$x^{2} - 24 x + 144$$
144 + x^2 - 24*x
Combinatorics [src]
         2
(-12 + x) 
$$\left(x - 12\right)^{2}$$
(-12 + x)^2
Powers [src]
       2       
144 + x  - 24*x
$$x^{2} - 24 x + 144$$
144 + x^2 - 24*x
Common denominator [src]
       2       
144 + x  - 24*x
$$x^{2} - 24 x + 144$$
144 + x^2 - 24*x