/ __________________ \ / __________________ \ / __________________\
| / ____ / ___\| | / ____ / ___\| | / ____ |
| / 1937 33*\/ 93 | 1 I*\/ 3 || | / 1937 33*\/ 93 | 1 I*\/ 3 || | / 1937 33*\/ 93 |
| 3 / ---- + --------- *|- - - -------|| | 3 / ---- + --------- *|- - + -------|| | 3 / ---- + --------- |
| 10 97 \/ 2 2 \ 2 2 /| | 10 97 \/ 2 2 \ 2 2 /| | 10 97 \/ 2 2 |
|x + -- + ----------------------------------------- + ---------------------------------------|*|x + -- + ----------------------------------------- + ---------------------------------------|*|x + -- + ------------------------- + -----------------------|
| 3 __________________ 3 | | 3 __________________ 3 | | 3 __________________ 3 |
| / ___\ / ____ | | / ___\ / ____ | | / ____ |
| | 1 I*\/ 3 | / 1937 33*\/ 93 | | | 1 I*\/ 3 | / 1937 33*\/ 93 | | / 1937 33*\/ 93 |
| 3*|- - - -------|*3 / ---- + --------- | | 3*|- - + -------|*3 / ---- + --------- | | 3*3 / ---- + --------- |
\ \ 2 2 / \/ 2 2 / \ \ 2 2 / \/ 2 2 / \ \/ 2 2 /
$$\left(x + \left(\frac{10}{3} + \frac{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{33 \sqrt{93}}{2} + \frac{1937}{2}}}{3} + \frac{97}{3 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{33 \sqrt{93}}{2} + \frac{1937}{2}}}\right)\right) \left(x + \left(\frac{10}{3} + \frac{97}{3 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{33 \sqrt{93}}{2} + \frac{1937}{2}}} + \frac{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{33 \sqrt{93}}{2} + \frac{1937}{2}}}{3}\right)\right) \left(x + \left(\frac{97}{3 \sqrt[3]{\frac{33 \sqrt{93}}{2} + \frac{1937}{2}}} + \frac{10}{3} + \frac{\sqrt[3]{\frac{33 \sqrt{93}}{2} + \frac{1937}{2}}}{3}\right)\right)$$
((x + 10/3 + 97/(3*(-1/2 - i*sqrt(3)/2)*(1937/2 + 33*sqrt(93)/2)^(1/3)) + (1937/2 + 33*sqrt(93)/2)^(1/3)*(-1/2 - i*sqrt(3)/2)/3)*(x + 10/3 + 97/(3*(-1/2 + i*sqrt(3)/2)*(1937/2 + 33*sqrt(93)/2)^(1/3)) + (1937/2 + 33*sqrt(93)/2)^(1/3)*(-1/2 + i*sqrt(3)/2)/3))*(x + 10/3 + 97/(3*(1937/2 + 33*sqrt(93)/2)^(1/3)) + (1937/2 + 33*sqrt(93)/2)^(1/3)/3)
General simplification
[src]
$$x^{3} + 10 x^{2} + x + 1$$
$$x^{3} + 10 x^{2} + x + 1$$
$$x^{3} + 10 x^{2} + x + 1$$
Combining rational expressions
[src]
$$x \left(x \left(x + 10\right) + 1\right) + 1$$
$$x^{3} + 10 x^{2} + x + 1$$
Rational denominator
[src]
$$x^{3} + 10 x^{2} + x + 1$$
Assemble expression
[src]
$$x^{3} + 10 x^{2} + x + 1$$
$$x^{3} + 10 x^{2} + x + 1$$