/ ___________\ / ___________\ / ___________\ / ___________\ / ___________\ / ___________\ / ___________\ / ___________\
| ___ / ___ | | ___ / ___ | | ___ / ___ | | ___ / ___ | | ___ / ___ | | ___ / ___ | | ___ / ___ | | ___ / ___ |
| 1 \/ 5 / 5 \/ 5 | | 1 \/ 5 / 5 \/ 5 | | 1 \/ 5 / 5 \/ 5 | | 1 \/ 5 / 5 \/ 5 | | 1 \/ 5 / 5 \/ 5 | | 1 \/ 5 / 5 \/ 5 | | 1 \/ 5 / 5 \/ 5 | | 1 \/ 5 / 5 \/ 5 |
(x + 1)*(x - 1)*|x + - - ----- + I* / - + ----- |*|x + - - ----- - I* / - + ----- |*|x + - - - ----- + I* / - - ----- |*|x + - - - ----- - I* / - - ----- |*|x + - + ----- + I* / - - ----- |*|x + - + ----- - I* / - - ----- |*|x + - - + ----- + I* / - + ----- |*|x + - - + ----- - I* / - + ----- |
\ 4 4 \/ 8 8 / \ 4 4 \/ 8 8 / \ 4 4 \/ 8 8 / \ 4 4 \/ 8 8 / \ 4 4 \/ 8 8 / \ 4 4 \/ 8 8 / \ 4 4 \/ 8 8 / \ 4 4 \/ 8 8 /
$$\left(x - 1\right) \left(x + 1\right) \left(x + \left(- \frac{\sqrt{5}}{4} + \frac{1}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right)\right) \left(x + \left(- \frac{\sqrt{5}}{4} + \frac{1}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right)\right) \left(x + \left(- \frac{\sqrt{5}}{4} - \frac{1}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}\right)\right) \left(x + \left(- \frac{\sqrt{5}}{4} - \frac{1}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}\right)\right) \left(x + \left(\frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}\right)\right) \left(x + \left(\frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}\right)\right) \left(x + \left(- \frac{1}{4} + \frac{\sqrt{5}}{4} + i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right)\right) \left(x + \left(- \frac{1}{4} + \frac{\sqrt{5}}{4} - i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right)\right)$$
(((((((((x + 1)*(x - 1))*(x + 1/4 - sqrt(5)/4 + i*sqrt(5/8 + sqrt(5)/8)))*(x + 1/4 - sqrt(5)/4 - i*sqrt(5/8 + sqrt(5)/8)))*(x - 1/4 - sqrt(5)/4 + i*sqrt(5/8 - sqrt(5)/8)))*(x - 1/4 - sqrt(5)/4 - i*sqrt(5/8 - sqrt(5)/8)))*(x + 1/4 + sqrt(5)/4 + i*sqrt(5/8 - sqrt(5)/8)))*(x + 1/4 + sqrt(5)/4 - i*sqrt(5/8 - sqrt(5)/8)))*(x - 1/4 + sqrt(5)/4 + i*sqrt(5/8 + sqrt(5)/8)))*(x - 1/4 + sqrt(5)/4 - i*sqrt(5/8 + sqrt(5)/8))
/ 2 3 4\ / 2 4 3\
(1 + x)*(-1 + x)*\1 + x + x + x + x /*\1 + x + x - x - x /
$$\left(x - 1\right) \left(x + 1\right) \left(x^{4} - x^{3} + x^{2} - x + 1\right) \left(x^{4} + x^{3} + x^{2} + x + 1\right)$$
(1 + x)*(-1 + x)*(1 + x + x^2 + x^3 + x^4)*(1 + x^2 + x^4 - x - x^3)