Mister Exam

# Factor polynomial x^6*y^9-64*x^3

An expression to simplify:

### The solution

You have entered [src]
 6  9       3
x *y  - 64*x 
$$x^{6} y^{9} - 64 x^{3}$$
x^6*y^9 - 64*x^3
General simplification [src]
 3 /       3  9\
x *\-64 + x *y /
$$x^{3} \left(x^{3} y^{9} - 64\right)$$
x^3*(-64 + x^3*y^9)
Factorization [src]
           /      /          ___\\ /      /          ___\\
|      |  1   I*\/ 3 || |      |  1   I*\/ 3 ||
|    4*|- - - -------|| |    4*|- - + -------||
/    4 \ |      \  2      2   /| |      \  2      2   /|
x*|x - --|*|x - -----------------|*|x - -----------------|
|     3| |             3       | |             3       |
\    y / \            y        / \            y        /
$$x \left(x - \frac{4}{y^{3}}\right) \left(x - \frac{4 \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)}{y^{3}}\right) \left(x - \frac{4 \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right)}{y^{3}}\right)$$
((x*(x - 4/y^3))*(x - 4*(-1/2 - i*sqrt(3)/2)/y^3))*(x - 4*(-1/2 + i*sqrt(3)/2)/y^3)
Combinatorics [src]
 3 /        3\ /      2  6        3\
x *\-4 + x*y /*\16 + x *y  + 4*x*y /
$$x^{3} \left(x y^{3} - 4\right) \left(x^{2} y^{6} + 4 x y^{3} + 16\right)$$
x^3*(-4 + x*y^3)*(16 + x^2*y^6 + 4*x*y^3)
Combining rational expressions [src]
 3 /       3  9\
x *\-64 + x *y /
$$x^{3} \left(x^{3} y^{9} - 64\right)$$
x^3*(-64 + x^3*y^9)
-64.0*x^3 + x^6*y^9
-64.0*x^3 + x^6*y^9