Mister Exam

Factor polynomial x^5-32

An expression to simplify:

The solution

You have entered [src]
 5     
x  - 32
$$x^{5} - 32$$
x^5 - 32
Factorization [src]
        /                         ___________\ /                         ___________\ /                         ___________\ /                         ___________\
        |          ___           /       ___ | |          ___           /       ___ | |          ___           /       ___ | |          ___           /       ___ |
        |    1   \/ 5           /  5   \/ 5  | |    1   \/ 5           /  5   \/ 5  | |    1   \/ 5           /  5   \/ 5  | |    1   \/ 5           /  5   \/ 5  |
(x - 2)*|x + - - ----- + 2*I*  /   - + ----- |*|x + - - ----- - 2*I*  /   - + ----- |*|x + - + ----- + 2*I*  /   - - ----- |*|x + - + ----- - 2*I*  /   - - ----- |
        \    2     2         \/    8     8   / \    2     2         \/    8     8   / \    2     2         \/    8     8   / \    2     2         \/    8     8   /
$$\left(x - 2\right) \left(x + \left(- \frac{\sqrt{5}}{2} + \frac{1}{2} + 2 i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right)\right) \left(x + \left(- \frac{\sqrt{5}}{2} + \frac{1}{2} - 2 i \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}\right)\right) \left(x + \left(\frac{1}{2} + \frac{\sqrt{5}}{2} + 2 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}\right)\right) \left(x + \left(\frac{1}{2} + \frac{\sqrt{5}}{2} - 2 i \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}\right)\right)$$
((((x - 2)*(x + 1/2 - sqrt(5)/2 + 2*i*sqrt(5/8 + sqrt(5)/8)))*(x + 1/2 - sqrt(5)/2 - 2*i*sqrt(5/8 + sqrt(5)/8)))*(x + 1/2 + sqrt(5)/2 + 2*i*sqrt(5/8 - sqrt(5)/8)))*(x + 1/2 + sqrt(5)/2 - 2*i*sqrt(5/8 - sqrt(5)/8))
Numerical answer [src]
-32.0 + x^5
-32.0 + x^5
Combinatorics [src]
         /      4      3      2      \
(-2 + x)*\16 + x  + 2*x  + 4*x  + 8*x/
$$\left(x - 2\right) \left(x^{4} + 2 x^{3} + 4 x^{2} + 8 x + 16\right)$$
(-2 + x)*(16 + x^4 + 2*x^3 + 4*x^2 + 8*x)