Mister Exam

Least common denominator z/x-z+x+z/z

An expression to simplify:

The solution

You have entered [src]
z           z
- - z + x + -
x           z
$$\left(x + \left(- z + \frac{z}{x}\right)\right) + \frac{z}{z}$$
z/x - z + x + z/z
General simplification [src]
            z
1 + x - z + -
            x
$$x - z + 1 + \frac{z}{x}$$
1 + x - z + z/x
Combinatorics [src]
         2      
x + z + x  - x*z
----------------
       x        
$$\frac{x^{2} - x z + x + z}{x}$$
(x + z + x^2 - x*z)/x
Assemble expression [src]
            z
1 + x - z + -
            x
$$x - z + 1 + \frac{z}{x}$$
          /     1\
1 + x + z*|-1 + -|
          \     x/
$$x + z \left(-1 + \frac{1}{x}\right) + 1$$
1 + x + z*(-1 + 1/x)
Combining rational expressions [src]
     2            
x + x  + z*(1 - x)
------------------
        x         
$$\frac{x^{2} + x + z \left(1 - x\right)}{x}$$
(x + x^2 + z*(1 - x))/x
Common denominator [src]
            z
1 + x - z + -
            x
$$x - z + 1 + \frac{z}{x}$$
1 + x - z + z/x
Trigonometric part [src]
            z
1 + x - z + -
            x
$$x - z + 1 + \frac{z}{x}$$
1 + x - z + z/x
Numerical answer [src]
1 + x - z + z/x
1 + x - z + z/x
Rational denominator [src]
        /     2      \
x*z + z*\z + x  - x*z/
----------------------
         x*z          
$$\frac{x z + z \left(x^{2} - x z + z\right)}{x z}$$
(x*z + z*(z + x^2 - x*z))/(x*z)
Powers [src]
            z
1 + x - z + -
            x
$$x - z + 1 + \frac{z}{x}$$
1 + x - z + z/x