Mister Exam

Other calculators

Least common denominator sqrt(x^2+a)/2+x^2/(2*sqrt(x^2+a))+a*(1+x/sqrt(x^2+a))/(2*(x+sqrt(x^2+a)))

An expression to simplify:

The solution

You have entered [src]
                                /         x     \
                              a*|1 + -----------|
   ________                     |       ________|
  /  2               2          |      /  2     |
\/  x  + a          x           \    \/  x  + a /
----------- + ------------- + -------------------
     2             ________     /       ________\
                  /  2          |      /  2     |
              2*\/  x  + a    2*\x + \/  x  + a /
$$\frac{a \left(\frac{x}{\sqrt{a + x^{2}}} + 1\right)}{2 \left(x + \sqrt{a + x^{2}}\right)} + \left(\frac{x^{2}}{2 \sqrt{a + x^{2}}} + \frac{\sqrt{a + x^{2}}}{2}\right)$$
sqrt(x^2 + a)/2 + x^2/((2*sqrt(x^2 + a))) + (a*(1 + x/sqrt(x^2 + a)))/((2*(x + sqrt(x^2 + a))))
General simplification [src]
   ________
  /      2 
\/  a + x  
$$\sqrt{a + x^{2}}$$
sqrt(a + x^2)
Expand expression [src]
                                /         x     \
                              a*|1 + -----------|
   ________                     |       ________|
  /  2               2          |      /  2     |
\/  x  + a          x           \    \/  x  + a /
----------- + ------------- + -------------------
     2             ________     /       ________\
                  /  2          |      /  2     |
              2*\/  x  + a    2*\x + \/  x  + a /
$$\frac{a \left(\frac{x}{\sqrt{a + x^{2}}} + 1\right)}{2 \left(x + \sqrt{a + x^{2}}\right)} + \frac{x^{2}}{2 \sqrt{a + x^{2}}} + \frac{\sqrt{a + x^{2}}}{2}$$
sqrt(x^2 + a)/2 + x^2/(2*sqrt(x^2 + a)) + a*(1 + x/sqrt(x^2 + a))/(2*(x + sqrt(x^2 + a)))
Combining rational expressions [src]
   ________
  /      2 
\/  a + x  
$$\sqrt{a + x^{2}}$$
sqrt(a + x^2)
Assemble expression [src]
                                /         x     \
                              a*|1 + -----------|
   ________                     |       ________|
  /      2           2          |      /      2 |
\/  a + x           x           \    \/  a + x  /
----------- + ------------- + -------------------
     2             ________              ________
                  /      2              /      2 
              2*\/  a + x     2*x + 2*\/  a + x  
$$\frac{a \left(\frac{x}{\sqrt{a + x^{2}}} + 1\right)}{2 x + 2 \sqrt{a + x^{2}}} + \frac{x^{2}}{2 \sqrt{a + x^{2}}} + \frac{\sqrt{a + x^{2}}}{2}$$
sqrt(a + x^2)/2 + x^2/(2*sqrt(a + x^2)) + a*(1 + x/sqrt(a + x^2))/(2*x + 2*sqrt(a + x^2))
Powers [src]
                                /         x     \
                              a*|1 + -----------|
   ________                     |       ________|
  /      2           2          |      /      2 |
\/  a + x           x           \    \/  a + x  /
----------- + ------------- + -------------------
     2             ________              ________
                  /      2              /      2 
              2*\/  a + x     2*x + 2*\/  a + x  
$$\frac{a \left(\frac{x}{\sqrt{a + x^{2}}} + 1\right)}{2 x + 2 \sqrt{a + x^{2}}} + \frac{x^{2}}{2 \sqrt{a + x^{2}}} + \frac{\sqrt{a + x^{2}}}{2}$$
sqrt(a + x^2)/2 + x^2/(2*sqrt(a + x^2)) + a*(1 + x/sqrt(a + x^2))/(2*x + 2*sqrt(a + x^2))
Rational denominator [src]
           ________                3/2                 3/2              ________
      4   /      2         /     2\          2 /     2\            2   /      2 
- 16*x *\/  a + x   + 16*a*\a + x /    + 16*x *\a + x /    - 16*a*x *\/  a + x  
--------------------------------------------------------------------------------
                                      /     2\                                  
                                 16*a*\a + x /                                  
$$\frac{- 16 a x^{2} \sqrt{a + x^{2}} + 16 a \left(a + x^{2}\right)^{\frac{3}{2}} - 16 x^{4} \sqrt{a + x^{2}} + 16 x^{2} \left(a + x^{2}\right)^{\frac{3}{2}}}{16 a \left(a + x^{2}\right)}$$
(-16*x^4*sqrt(a + x^2) + 16*a*(a + x^2)^(3/2) + 16*x^2*(a + x^2)^(3/2) - 16*a*x^2*sqrt(a + x^2))/(16*a*(a + x^2))
Trigonometric part [src]
                                /         x     \
                              a*|1 + -----------|
   ________                     |       ________|
  /      2           2          |      /      2 |
\/  a + x           x           \    \/  a + x  /
----------- + ------------- + -------------------
     2             ________              ________
                  /      2              /      2 
              2*\/  a + x     2*x + 2*\/  a + x  
$$\frac{a \left(\frac{x}{\sqrt{a + x^{2}}} + 1\right)}{2 x + 2 \sqrt{a + x^{2}}} + \frac{x^{2}}{2 \sqrt{a + x^{2}}} + \frac{\sqrt{a + x^{2}}}{2}$$
sqrt(a + x^2)/2 + x^2/(2*sqrt(a + x^2)) + a*(1 + x/sqrt(a + x^2))/(2*x + 2*sqrt(a + x^2))
Numerical answer [src]
0.5*(a + x^2)^0.5 + 0.5*x^2*(a + x^2)^(-0.5) + a*(1.0 + x*(a + x^2)^(-0.5))/(2.0*x + 2.0*(a + x^2)^0.5)
0.5*(a + x^2)^0.5 + 0.5*x^2*(a + x^2)^(-0.5) + a*(1.0 + x*(a + x^2)^(-0.5))/(2.0*x + 2.0*(a + x^2)^0.5)
Common denominator [src]
           a       
x + ---------------
           ________
          /      2 
    x + \/  a + x  
$$\frac{a}{x + \sqrt{a + x^{2}}} + x$$
x + a/(x + sqrt(a + x^2))
Combinatorics [src]
   ________
  /      2 
\/  a + x  
$$\sqrt{a + x^{2}}$$
sqrt(a + x^2)