General simplification
[src]
$$\sqrt{a + x^{2}}$$
/ x \
a*|1 + -----------|
________ | ________|
/ 2 2 | / 2 |
\/ x + a x \ \/ x + a /
----------- + ------------- + -------------------
2 ________ / ________\
/ 2 | / 2 |
2*\/ x + a 2*\x + \/ x + a /
$$\frac{a \left(\frac{x}{\sqrt{a + x^{2}}} + 1\right)}{2 \left(x + \sqrt{a + x^{2}}\right)} + \frac{x^{2}}{2 \sqrt{a + x^{2}}} + \frac{\sqrt{a + x^{2}}}{2}$$
sqrt(x^2 + a)/2 + x^2/(2*sqrt(x^2 + a)) + a*(1 + x/sqrt(x^2 + a))/(2*(x + sqrt(x^2 + a)))
Combining rational expressions
[src]
$$\sqrt{a + x^{2}}$$
Assemble expression
[src]
/ x \
a*|1 + -----------|
________ | ________|
/ 2 2 | / 2 |
\/ a + x x \ \/ a + x /
----------- + ------------- + -------------------
2 ________ ________
/ 2 / 2
2*\/ a + x 2*x + 2*\/ a + x
$$\frac{a \left(\frac{x}{\sqrt{a + x^{2}}} + 1\right)}{2 x + 2 \sqrt{a + x^{2}}} + \frac{x^{2}}{2 \sqrt{a + x^{2}}} + \frac{\sqrt{a + x^{2}}}{2}$$
sqrt(a + x^2)/2 + x^2/(2*sqrt(a + x^2)) + a*(1 + x/sqrt(a + x^2))/(2*x + 2*sqrt(a + x^2))
/ x \
a*|1 + -----------|
________ | ________|
/ 2 2 | / 2 |
\/ a + x x \ \/ a + x /
----------- + ------------- + -------------------
2 ________ ________
/ 2 / 2
2*\/ a + x 2*x + 2*\/ a + x
$$\frac{a \left(\frac{x}{\sqrt{a + x^{2}}} + 1\right)}{2 x + 2 \sqrt{a + x^{2}}} + \frac{x^{2}}{2 \sqrt{a + x^{2}}} + \frac{\sqrt{a + x^{2}}}{2}$$
sqrt(a + x^2)/2 + x^2/(2*sqrt(a + x^2)) + a*(1 + x/sqrt(a + x^2))/(2*x + 2*sqrt(a + x^2))
Rational denominator
[src]
________ 3/2 3/2 ________
4 / 2 / 2\ 2 / 2\ 2 / 2
- 16*x *\/ a + x + 16*a*\a + x / + 16*x *\a + x / - 16*a*x *\/ a + x
--------------------------------------------------------------------------------
/ 2\
16*a*\a + x /
$$\frac{- 16 a x^{2} \sqrt{a + x^{2}} + 16 a \left(a + x^{2}\right)^{\frac{3}{2}} - 16 x^{4} \sqrt{a + x^{2}} + 16 x^{2} \left(a + x^{2}\right)^{\frac{3}{2}}}{16 a \left(a + x^{2}\right)}$$
(-16*x^4*sqrt(a + x^2) + 16*a*(a + x^2)^(3/2) + 16*x^2*(a + x^2)^(3/2) - 16*a*x^2*sqrt(a + x^2))/(16*a*(a + x^2))
/ x \
a*|1 + -----------|
________ | ________|
/ 2 2 | / 2 |
\/ a + x x \ \/ a + x /
----------- + ------------- + -------------------
2 ________ ________
/ 2 / 2
2*\/ a + x 2*x + 2*\/ a + x
$$\frac{a \left(\frac{x}{\sqrt{a + x^{2}}} + 1\right)}{2 x + 2 \sqrt{a + x^{2}}} + \frac{x^{2}}{2 \sqrt{a + x^{2}}} + \frac{\sqrt{a + x^{2}}}{2}$$
sqrt(a + x^2)/2 + x^2/(2*sqrt(a + x^2)) + a*(1 + x/sqrt(a + x^2))/(2*x + 2*sqrt(a + x^2))
0.5*(a + x^2)^0.5 + 0.5*x^2*(a + x^2)^(-0.5) + a*(1.0 + x*(a + x^2)^(-0.5))/(2.0*x + 2.0*(a + x^2)^0.5)
0.5*(a + x^2)^0.5 + 0.5*x^2*(a + x^2)^(-0.5) + a*(1.0 + x*(a + x^2)^(-0.5))/(2.0*x + 2.0*(a + x^2)^0.5)
a
x + ---------------
________
/ 2
x + \/ a + x
$$\frac{a}{x + \sqrt{a + x^{2}}} + x$$
x + a/(x + sqrt(a + x^2))