Mister Exam

Other calculators

Least common denominator sqrt(x-a)/sqrt(x+a)-sqrt(x-a)-sqrt(x+a)/sqrt(x+a)-sqrt(x-a)

An expression to simplify:

The solution

You have entered [src]
  _______                 _______            
\/ x - a      _______   \/ x + a      _______
--------- - \/ x - a  - --------- - \/ x - a 
  _______                 _______            
\/ x + a                \/ x + a             
$$- \sqrt{- a + x} + \left(\left(- \sqrt{- a + x} + \frac{\sqrt{- a + x}}{\sqrt{a + x}}\right) - \frac{\sqrt{a + x}}{\sqrt{a + x}}\right)$$
sqrt(x - a)/sqrt(x + a) - sqrt(x - a) - sqrt(x + a)/sqrt(x + a) - sqrt(x - a)
General simplification [src]
                     _______
         _______   \/ x - a 
-1 - 2*\/ x - a  + ---------
                     _______
                   \/ a + x 
$$- 2 \sqrt{- a + x} + \frac{\sqrt{- a + x}}{\sqrt{a + x}} - 1$$
-1 - 2*sqrt(x - a) + sqrt(x - a)/sqrt(a + x)
Common denominator [src]
                     _______
         _______   \/ x - a 
-1 - 2*\/ x - a  + ---------
                     _______
                   \/ a + x 
$$- 2 \sqrt{- a + x} + \frac{\sqrt{- a + x}}{\sqrt{a + x}} - 1$$
-1 - 2*sqrt(x - a) + sqrt(x - a)/sqrt(a + x)
Powers [src]
                     _______
         _______   \/ x - a 
-1 - 2*\/ x - a  + ---------
                     _______
                   \/ a + x 
$$- 2 \sqrt{- a + x} + \frac{\sqrt{- a + x}}{\sqrt{a + x}} - 1$$
-1 - 2*sqrt(x - a) + sqrt(x - a)/sqrt(a + x)
Rational denominator [src]
           _______   _______         _______         _______
-a - x + \/ a + x *\/ x - a  - 2*a*\/ x - a  - 2*x*\/ x - a 
------------------------------------------------------------
                           a + x                            
$$\frac{- 2 a \sqrt{- a + x} - a - 2 x \sqrt{- a + x} - x + \sqrt{- a + x} \sqrt{a + x}}{a + x}$$
(-a - x + sqrt(a + x)*sqrt(x - a) - 2*a*sqrt(x - a) - 2*x*sqrt(x - a))/(a + x)
Numerical answer [src]
-1 - 2*(x - a)^0.5 + (a + x)^(-0.5)*(x - a)^0.5
-1 - 2*(x - a)^0.5 + (a + x)^(-0.5)*(x - a)^0.5
Combinatorics [src]
 /  _______     _______       _______   _______\ 
-\\/ a + x  - \/ x - a  + 2*\/ a + x *\/ x - a / 
-------------------------------------------------
                      _______                    
                    \/ a + x                     
$$- \frac{2 \sqrt{- a + x} \sqrt{a + x} - \sqrt{- a + x} + \sqrt{a + x}}{\sqrt{a + x}}$$
-(sqrt(a + x) - sqrt(x - a) + 2*sqrt(a + x)*sqrt(x - a))/sqrt(a + x)
Trigonometric part [src]
                     _______
         _______   \/ x - a 
-1 - 2*\/ x - a  + ---------
                     _______
                   \/ a + x 
$$- 2 \sqrt{- a + x} + \frac{\sqrt{- a + x}}{\sqrt{a + x}} - 1$$
-1 - 2*sqrt(x - a) + sqrt(x - a)/sqrt(a + x)
Assemble expression [src]
                     _______
         _______   \/ x - a 
-1 - 2*\/ x - a  + ---------
                     _______
                   \/ a + x 
$$- 2 \sqrt{- a + x} + \frac{\sqrt{- a + x}}{\sqrt{a + x}} - 1$$
-1 - 2*sqrt(x - a) + sqrt(x - a)/sqrt(a + x)
Combining rational expressions [src]
    _______     _______ /      _______\     _______   _______
- \/ a + x  + \/ x - a *\1 - \/ a + x / - \/ a + x *\/ x - a 
-------------------------------------------------------------
                            _______                          
                          \/ a + x                           
$$\frac{\left(1 - \sqrt{a + x}\right) \sqrt{- a + x} - \sqrt{- a + x} \sqrt{a + x} - \sqrt{a + x}}{\sqrt{a + x}}$$
(-sqrt(a + x) + sqrt(x - a)*(1 - sqrt(a + x)) - sqrt(a + x)*sqrt(x - a))/sqrt(a + x)