Mister Exam

Other calculators

Least common denominator sqrt(x)/(1+sqrt(x))*(sqrt(x)/(1-sqrt(x))-1/(sqrt(x)-x))

An expression to simplify:

The solution

You have entered [src]
    ___   /    ___              \
  \/ x    |  \/ x          1    |
---------*|--------- - ---------|
      ___ |      ___     ___    |
1 + \/ x  \1 - \/ x    \/ x  - x/
$$\frac{\sqrt{x}}{\sqrt{x} + 1} \left(\frac{\sqrt{x}}{1 - \sqrt{x}} - \frac{1}{\sqrt{x} - x}\right)$$
(sqrt(x)/(1 + sqrt(x)))*(sqrt(x)/(1 - sqrt(x)) - 1/(sqrt(x) - x))
General simplification [src]
-1
$$-1$$
-1
Fraction decomposition [src]
-1
$$-1$$
-1
Common denominator [src]
-1
$$-1$$
-1
Numerical answer [src]
x^0.5*(-1/(x^0.5 - x) + x^0.5/(1.0 - x^0.5))/(1.0 + x^0.5)
x^0.5*(-1/(x^0.5 - x) + x^0.5/(1.0 - x^0.5))/(1.0 + x^0.5)
Assemble expression [src]
      /                  ___  \
  ___ |      1         \/ x   |
\/ x *|- --------- + ---------|
      |    ___             ___|
      \  \/ x  - x   1 - \/ x /
-------------------------------
                 ___           
           1 + \/ x            
$$\frac{\sqrt{x} \left(\frac{\sqrt{x}}{1 - \sqrt{x}} - \frac{1}{\sqrt{x} - x}\right)}{\sqrt{x} + 1}$$
sqrt(x)*(-1/(sqrt(x) - x) + sqrt(x)/(1 - sqrt(x)))/(1 + sqrt(x))
Combinatorics [src]
     ___ /           ___    3/2\    
   \/ x *\-1 + x + \/ x  - x   /    
------------------------------------
/      ___\ /       ___\ /      ___\
\1 + \/ x /*\-1 + \/ x /*\x - \/ x /
$$\frac{\sqrt{x} \left(- x^{\frac{3}{2}} + \sqrt{x} + x - 1\right)}{\left(- \sqrt{x} + x\right) \left(\sqrt{x} - 1\right) \left(\sqrt{x} + 1\right)}$$
sqrt(x)*(-1 + x + sqrt(x) - x^(3/2))/((1 + sqrt(x))*(-1 + sqrt(x))*(x - sqrt(x)))
Rational denominator [src]
     4      2      3
x - x  - 3*x  + 3*x 
--------------------
         2 / 2    \ 
 (-1 + x) *\x  - x/ 
$$\frac{- x^{4} + 3 x^{3} - 3 x^{2} + x}{\left(x - 1\right)^{2} \left(x^{2} - x\right)}$$
(x - x^4 - 3*x^2 + 3*x^3)/((-1 + x)^2*(x^2 - x))
Powers [src]
      /                  ___  \
  ___ |      1         \/ x   |
\/ x *|- --------- + ---------|
      |    ___             ___|
      \  \/ x  - x   1 - \/ x /
-------------------------------
                 ___           
           1 + \/ x            
$$\frac{\sqrt{x} \left(\frac{\sqrt{x}}{1 - \sqrt{x}} - \frac{1}{\sqrt{x} - x}\right)}{\sqrt{x} + 1}$$
sqrt(x)*(-1/(sqrt(x) - x) + sqrt(x)/(1 - sqrt(x)))/(1 + sqrt(x))
Combining rational expressions [src]
  ___ /       ___     ___ /  ___    \\
\/ x *\-1 + \/ x  + \/ x *\\/ x  - x//
--------------------------------------
 /      ___\ /      ___\ /  ___    \  
 \1 + \/ x /*\1 - \/ x /*\\/ x  - x/  
$$\frac{\sqrt{x} \left(\sqrt{x} \left(\sqrt{x} - x\right) + \sqrt{x} - 1\right)}{\left(1 - \sqrt{x}\right) \left(\sqrt{x} + 1\right) \left(\sqrt{x} - x\right)}$$
sqrt(x)*(-1 + sqrt(x) + sqrt(x)*(sqrt(x) - x))/((1 + sqrt(x))*(1 - sqrt(x))*(sqrt(x) - x))
Trigonometric part [src]
      /                  ___  \
  ___ |      1         \/ x   |
\/ x *|- --------- + ---------|
      |    ___             ___|
      \  \/ x  - x   1 - \/ x /
-------------------------------
                 ___           
           1 + \/ x            
$$\frac{\sqrt{x} \left(\frac{\sqrt{x}}{1 - \sqrt{x}} - \frac{1}{\sqrt{x} - x}\right)}{\sqrt{x} + 1}$$
sqrt(x)*(-1/(sqrt(x) - x) + sqrt(x)/(1 - sqrt(x)))/(1 + sqrt(x))