General simplification
[src]
$$-1$$
Fraction decomposition
[src]
$$-1$$
x^0.5*(-1/(x^0.5 - x) + x^0.5/(1.0 - x^0.5))/(1.0 + x^0.5)
x^0.5*(-1/(x^0.5 - x) + x^0.5/(1.0 - x^0.5))/(1.0 + x^0.5)
Assemble expression
[src]
/ ___ \
___ | 1 \/ x |
\/ x *|- --------- + ---------|
| ___ ___|
\ \/ x - x 1 - \/ x /
-------------------------------
___
1 + \/ x
$$\frac{\sqrt{x} \left(\frac{\sqrt{x}}{1 - \sqrt{x}} - \frac{1}{\sqrt{x} - x}\right)}{\sqrt{x} + 1}$$
sqrt(x)*(-1/(sqrt(x) - x) + sqrt(x)/(1 - sqrt(x)))/(1 + sqrt(x))
___ / ___ 3/2\
\/ x *\-1 + x + \/ x - x /
------------------------------------
/ ___\ / ___\ / ___\
\1 + \/ x /*\-1 + \/ x /*\x - \/ x /
$$\frac{\sqrt{x} \left(- x^{\frac{3}{2}} + \sqrt{x} + x - 1\right)}{\left(- \sqrt{x} + x\right) \left(\sqrt{x} - 1\right) \left(\sqrt{x} + 1\right)}$$
sqrt(x)*(-1 + x + sqrt(x) - x^(3/2))/((1 + sqrt(x))*(-1 + sqrt(x))*(x - sqrt(x)))
Rational denominator
[src]
4 2 3
x - x - 3*x + 3*x
--------------------
2 / 2 \
(-1 + x) *\x - x/
$$\frac{- x^{4} + 3 x^{3} - 3 x^{2} + x}{\left(x - 1\right)^{2} \left(x^{2} - x\right)}$$
(x - x^4 - 3*x^2 + 3*x^3)/((-1 + x)^2*(x^2 - x))
/ ___ \
___ | 1 \/ x |
\/ x *|- --------- + ---------|
| ___ ___|
\ \/ x - x 1 - \/ x /
-------------------------------
___
1 + \/ x
$$\frac{\sqrt{x} \left(\frac{\sqrt{x}}{1 - \sqrt{x}} - \frac{1}{\sqrt{x} - x}\right)}{\sqrt{x} + 1}$$
sqrt(x)*(-1/(sqrt(x) - x) + sqrt(x)/(1 - sqrt(x)))/(1 + sqrt(x))
Combining rational expressions
[src]
___ / ___ ___ / ___ \\
\/ x *\-1 + \/ x + \/ x *\\/ x - x//
--------------------------------------
/ ___\ / ___\ / ___ \
\1 + \/ x /*\1 - \/ x /*\\/ x - x/
$$\frac{\sqrt{x} \left(\sqrt{x} \left(\sqrt{x} - x\right) + \sqrt{x} - 1\right)}{\left(1 - \sqrt{x}\right) \left(\sqrt{x} + 1\right) \left(\sqrt{x} - x\right)}$$
sqrt(x)*(-1 + sqrt(x) + sqrt(x)*(sqrt(x) - x))/((1 + sqrt(x))*(1 - sqrt(x))*(sqrt(x) - x))
/ ___ \
___ | 1 \/ x |
\/ x *|- --------- + ---------|
| ___ ___|
\ \/ x - x 1 - \/ x /
-------------------------------
___
1 + \/ x
$$\frac{\sqrt{x} \left(\frac{\sqrt{x}}{1 - \sqrt{x}} - \frac{1}{\sqrt{x} - x}\right)}{\sqrt{x} + 1}$$
sqrt(x)*(-1/(sqrt(x) - x) + sqrt(x)/(1 - sqrt(x)))/(1 + sqrt(x))