/ / / pi\\ \
|log|sin|x + --|| 2 |
log(x)/ pi\ | \ \ 2 // 2*sin (x)*log(x)|
sin |x + --|*|---------------- - ----------------|
\ 2 / \ x sin(2*x) /
$$\left(- \frac{2 \log{\left(x \right)} \sin^{2}{\left(x \right)}}{\sin{\left(2 x \right)}} + \frac{\log{\left(\sin{\left(x + \frac{\pi}{2} \right)} \right)}}{x}\right) \sin^{\log{\left(x \right)}}{\left(x + \frac{\pi}{2} \right)}$$
log(x) /log(cos(x)) \
cos (x)*|----------- - log(x)*tan(x)|
\ x /
$$\left(- \log{\left(x \right)} \tan{\left(x \right)} + \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}$$
/ / 2/x\\ \
| |1 - tan |-|| |
| | \2/| |
log(x) |log|-----------| |
/ 2/x\\ | | 2/x\| |
|1 - tan |-|| | |1 + tan |-|| |
| \2/| | \ \2// |
|-----------| *|---------------- - log(x)*tan(x)|
| 2/x\| \ x /
|1 + tan |-||
\ \2//
$$\left(\frac{1 - \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1}\right)^{\log{\left(x \right)}} \left(- \log{\left(x \right)} \tan{\left(x \right)} + \frac{\log{\left(\frac{1 - \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1} \right)}}{x}\right)$$
/ / 1 \ \
log(x) |log|------| |
/ 1 \ | \sec(x)/ log(x)*sec(x)|
|------| *|----------- - -------------|
\sec(x)/ | x / pi\ |
| sec|x - --| |
\ \ 2 / /
$$\left(- \frac{\log{\left(x \right)} \sec{\left(x \right)}}{\sec{\left(x - \frac{\pi}{2} \right)}} + \frac{\log{\left(\frac{1}{\sec{\left(x \right)}} \right)}}{x}\right) \left(\frac{1}{\sec{\left(x \right)}}\right)^{\log{\left(x \right)}}$$
/ / 1 \ \
log(x) |log|------| |
/ 1 \ | \sec(x)/ log(x)*sec(x)|
|------| *|----------- - -------------|
\sec(x)/ \ x csc(x) /
$$\left(- \frac{\log{\left(x \right)} \sec{\left(x \right)}}{\csc{\left(x \right)}} + \frac{\log{\left(\frac{1}{\sec{\left(x \right)}} \right)}}{x}\right) \left(\frac{1}{\sec{\left(x \right)}}\right)^{\log{\left(x \right)}}$$
/ / / pi\\ \
|log|sin|x + --|| |
log(x)/ pi\ | \ \ 2 // log(x)*sin(x)|
sin |x + --|*|---------------- - -------------|
\ 2 / | x / pi\ |
| sin|x + --| |
\ \ 2 / /
$$\left(- \frac{\log{\left(x \right)} \sin{\left(x \right)}}{\sin{\left(x + \frac{\pi}{2} \right)}} + \frac{\log{\left(\sin{\left(x + \frac{\pi}{2} \right)} \right)}}{x}\right) \sin^{\log{\left(x \right)}}{\left(x + \frac{\pi}{2} \right)}$$
/ / 2/x\\ \
| |-1 + cot |-|| |
| | \2/| |
log(x) |log|------------| |
/ 2/x\\ | | 2/x\ | /x\ |
|-1 + cot |-|| | |1 + cot |-| | 2*cot|-|*log(x)|
| \2/| | \ \2/ / \2/ |
|------------| *|----------------- - ---------------|
| 2/x\ | | x 2/x\ |
|1 + cot |-| | | -1 + cot |-| |
\ \2/ / \ \2/ /
$$\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} \right)} + 1}\right)^{\log{\left(x \right)}} \left(- \frac{2 \log{\left(x \right)} \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} - 1} + \frac{\log{\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} \right)}}{x}\right)$$
/ / 2/x\\ \
| |-1 + cot |-|| |
| | \2/| |
log(x) |log|------------| |
/ 2/x\\ | | 2/x\ | |
|-1 + cot |-|| | |1 + cot |-| | |
| \2/| | \ \2/ / log(x)|
|------------| *|----------------- - ------|
| 2/x\ | \ x cot(x)/
|1 + cot |-| |
\ \2/ /
$$\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} \right)} + 1}\right)^{\log{\left(x \right)}} \left(- \frac{\log{\left(x \right)}}{\cot{\left(x \right)}} + \frac{\log{\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} \right)}}{x}\right)$$
/ / 2/x\\ \
| |1 - tan |-|| |
| | \2/| |
log(x) |log|-----------| |
/ 2/x\\ | | 2/x\| /x\|
|1 - tan |-|| | |1 + tan |-|| 2*log(x)*tan|-||
| \2/| | \ \2// \2/|
|-----------| *|---------------- - ---------------|
| 2/x\| | x 2/x\ |
|1 + tan |-|| | 1 - tan |-| |
\ \2// \ \2/ /
$$\left(\frac{1 - \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1}\right)^{\log{\left(x \right)}} \left(- \frac{2 \log{\left(x \right)} \tan{\left(\frac{x}{2} \right)}}{1 - \tan^{2}{\left(\frac{x}{2} \right)}} + \frac{\log{\left(\frac{1 - \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1} \right)}}{x}\right)$$
/ / pi\ \
| cos|x - --|*log(x)|
log(x) |log(cos(x)) \ 2 / |
cos (x)*|----------- - ------------------|
\ x cos(x) /
$$\left(- \frac{\log{\left(x \right)} \cos{\left(x - \frac{\pi}{2} \right)}}{\cos{\left(x \right)}} + \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}$$
/ / 1 \ \
|log|-----------| |
| | /pi \| /pi \ |
log(x) | |csc|-- - x|| csc|-- - x|*log(x)|
/ 1 \ | \ \2 // \2 / |
|-----------| *|---------------- - ------------------|
| /pi \| \ x csc(x) /
|csc|-- - x||
\ \2 //
$$\left(- \frac{\log{\left(x \right)} \csc{\left(- x + \frac{\pi}{2} \right)}}{\csc{\left(x \right)}} + \frac{\log{\left(\frac{1}{\csc{\left(- x + \frac{\pi}{2} \right)}} \right)}}{x}\right) \left(\frac{1}{\csc{\left(- x + \frac{\pi}{2} \right)}}\right)^{\log{\left(x \right)}}$$
(1/csc(pi/2 - x))^log(x)*(log(1/csc(pi/2 - x))/x - csc(pi/2 - x)*log(x)/csc(x))