Mister Exam

Other calculators

Least common denominator cos(x)^log(x)*(log(cos(x))/x-log(x)*sin(x)/cos(x))

An expression to simplify:

The solution

You have entered [src]
   log(x)    /log(cos(x))   log(x)*sin(x)\
cos      (x)*|----------- - -------------|
             \     x            cos(x)   /
$$\left(- \frac{\log{\left(x \right)} \sin{\left(x \right)}}{\cos{\left(x \right)}} + \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}$$
cos(x)^log(x)*(log(cos(x))/x - log(x)*sin(x)/cos(x))
General simplification [src]
   -1 + log(x)                                          
cos           (x)*(cos(x)*log(cos(x)) - x*log(x)*sin(x))
--------------------------------------------------------
                           x                            
$$\frac{\left(- x \log{\left(x \right)} \sin{\left(x \right)} + \log{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)}\right) \cos^{\log{\left(x \right)} - 1}{\left(x \right)}}{x}$$
cos(x)^(-1 + log(x))*(cos(x)*log(cos(x)) - x*log(x)*sin(x))/x
Combinatorics [src]
    log(x)                                            
-cos      (x)*(-cos(x)*log(cos(x)) + x*log(x)*sin(x)) 
------------------------------------------------------
                       x*cos(x)                       
$$- \frac{\left(x \log{\left(x \right)} \sin{\left(x \right)} - \log{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}}{x \cos{\left(x \right)}}$$
-cos(x)^log(x)*(-cos(x)*log(cos(x)) + x*log(x)*sin(x))/(x*cos(x))
Rational denominator [src]
   log(x)                                          
cos      (x)*(cos(x)*log(cos(x)) - x*log(x)*sin(x))
---------------------------------------------------
                      x*cos(x)                     
$$\frac{\left(- x \log{\left(x \right)} \sin{\left(x \right)} + \log{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}}{x \cos{\left(x \right)}}$$
cos(x)^log(x)*(cos(x)*log(cos(x)) - x*log(x)*sin(x))/(x*cos(x))
Common denominator [src]
 /     log(x)                              log(x)                 \ 
-\- cos      (x)*cos(x)*log(cos(x)) + x*cos      (x)*log(x)*sin(x)/ 
--------------------------------------------------------------------
                              x*cos(x)                              
$$- \frac{x \log{\left(x \right)} \sin{\left(x \right)} \cos^{\log{\left(x \right)}}{\left(x \right)} - \log{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)} \cos^{\log{\left(x \right)}}{\left(x \right)}}{x \cos{\left(x \right)}}$$
-(-cos(x)^log(x)*cos(x)*log(cos(x)) + x*cos(x)^log(x)*log(x)*sin(x))/(x*cos(x))
Numerical answer [src]
cos(x)^log(x)*(log(cos(x))/x - log(x)*sin(x)/cos(x))
cos(x)^log(x)*(log(cos(x))/x - log(x)*sin(x)/cos(x))
Powers [src]
                     /   / I*x    -I*x\                            \
              log(x) |   |e      e    |                            |
/ I*x    -I*x\       |log|---- + -----|     /   -I*x    I*x\       |
|e      e    |       |   \ 2       2  /   I*\- e     + e   /*log(x)|
|---- + -----|      *|----------------- + -------------------------|
\ 2       2  /       |        x                  / I*x    -I*x\    |
                     |                           |e      e    |    |
                     |                         2*|---- + -----|    |
                     \                           \ 2       2  /    /
$$\left(\frac{i \left(e^{i x} - e^{- i x}\right) \log{\left(x \right)}}{2 \left(\frac{e^{i x}}{2} + \frac{e^{- i x}}{2}\right)} + \frac{\log{\left(\frac{e^{i x}}{2} + \frac{e^{- i x}}{2} \right)}}{x}\right) \left(\frac{e^{i x}}{2} + \frac{e^{- i x}}{2}\right)^{\log{\left(x \right)}}$$
(exp(i*x)/2 + exp(-i*x)/2)^log(x)*(log(exp(i*x)/2 + exp(-i*x)/2)/x + i*(-exp(-i*x) + exp(i*x))*log(x)/(2*(exp(i*x)/2 + exp(-i*x)/2)))
Combining rational expressions [src]
   log(x)                                          
cos      (x)*(cos(x)*log(cos(x)) - x*log(x)*sin(x))
---------------------------------------------------
                      x*cos(x)                     
$$\frac{\left(- x \log{\left(x \right)} \sin{\left(x \right)} + \log{\left(\cos{\left(x \right)} \right)} \cos{\left(x \right)}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}}{x \cos{\left(x \right)}}$$
cos(x)^log(x)*(cos(x)*log(cos(x)) - x*log(x)*sin(x))/(x*cos(x))
Expand expression [src]
   log(x)                     log(x)                 
cos      (x)*log(cos(x))   cos      (x)*log(x)*sin(x)
------------------------ - --------------------------
           x                         cos(x)          
$$- \frac{\log{\left(x \right)} \sin{\left(x \right)} \cos^{\log{\left(x \right)}}{\left(x \right)}}{\cos{\left(x \right)}} + \frac{\log{\left(\cos{\left(x \right)} \right)} \cos^{\log{\left(x \right)}}{\left(x \right)}}{x}$$
cos(x)^log(x)*log(cos(x))/x - cos(x)^log(x)*log(x)*sin(x)/cos(x)
Trigonometric part [src]
                  /   /   /    pi\\                   \
                  |log|sin|x + --||        2          |
   log(x)/    pi\ |   \   \    2 //   2*sin (x)*log(x)|
sin      |x + --|*|---------------- - ----------------|
         \    2 / \       x               sin(2*x)    /
$$\left(- \frac{2 \log{\left(x \right)} \sin^{2}{\left(x \right)}}{\sin{\left(2 x \right)}} + \frac{\log{\left(\sin{\left(x + \frac{\pi}{2} \right)} \right)}}{x}\right) \sin^{\log{\left(x \right)}}{\left(x + \frac{\pi}{2} \right)}$$
   log(x)    /log(cos(x))                \
cos      (x)*|----------- - log(x)*tan(x)|
             \     x                     /
$$\left(- \log{\left(x \right)} \tan{\left(x \right)} + \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}$$
                    /   /       2/x\\                \
                    |   |1 - tan |-||                |
                    |   |        \2/|                |
             log(x) |log|-----------|                |
/       2/x\\       |   |       2/x\|                |
|1 - tan |-||       |   |1 + tan |-||                |
|        \2/|       |   \        \2//                |
|-----------|      *|---------------- - log(x)*tan(x)|
|       2/x\|       \       x                        /
|1 + tan |-||                                         
\        \2//                                         
$$\left(\frac{1 - \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1}\right)^{\log{\left(x \right)}} \left(- \log{\left(x \right)} \tan{\left(x \right)} + \frac{\log{\left(\frac{1 - \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1} \right)}}{x}\right)$$
               /   /  1   \                \
        log(x) |log|------|                |
/  1   \       |   \sec(x)/   log(x)*sec(x)|
|------|      *|----------- - -------------|
\sec(x)/       |     x            /    pi\ |
               |               sec|x - --| |
               \                  \    2 / /
$$\left(- \frac{\log{\left(x \right)} \sec{\left(x \right)}}{\sec{\left(x - \frac{\pi}{2} \right)}} + \frac{\log{\left(\frac{1}{\sec{\left(x \right)}} \right)}}{x}\right) \left(\frac{1}{\sec{\left(x \right)}}\right)^{\log{\left(x \right)}}$$
               /   /  1   \                \
        log(x) |log|------|                |
/  1   \       |   \sec(x)/   log(x)*sec(x)|
|------|      *|----------- - -------------|
\sec(x)/       \     x            csc(x)   /
$$\left(- \frac{\log{\left(x \right)} \sec{\left(x \right)}}{\csc{\left(x \right)}} + \frac{\log{\left(\frac{1}{\sec{\left(x \right)}} \right)}}{x}\right) \left(\frac{1}{\sec{\left(x \right)}}\right)^{\log{\left(x \right)}}$$
                  /   /   /    pi\\                \
                  |log|sin|x + --||                |
   log(x)/    pi\ |   \   \    2 //   log(x)*sin(x)|
sin      |x + --|*|---------------- - -------------|
         \    2 / |       x               /    pi\ |
                  |                    sin|x + --| |
                  \                       \    2 / /
$$\left(- \frac{\log{\left(x \right)} \sin{\left(x \right)}}{\sin{\left(x + \frac{\pi}{2} \right)}} + \frac{\log{\left(\sin{\left(x + \frac{\pi}{2} \right)} \right)}}{x}\right) \sin^{\log{\left(x \right)}}{\left(x + \frac{\pi}{2} \right)}$$
                     /   /        2/x\\                  \
                     |   |-1 + cot |-||                  |
                     |   |         \2/|                  |
              log(x) |log|------------|                  |
/        2/x\\       |   |       2/x\ |        /x\       |
|-1 + cot |-||       |   |1 + cot |-| |   2*cot|-|*log(x)|
|         \2/|       |   \        \2/ /        \2/       |
|------------|      *|----------------- - ---------------|
|       2/x\ |       |        x                     2/x\ |
|1 + cot |-| |       |                      -1 + cot |-| |
\        \2/ /       \                               \2/ /
$$\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} \right)} + 1}\right)^{\log{\left(x \right)}} \left(- \frac{2 \log{\left(x \right)} \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} - 1} + \frac{\log{\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} \right)}}{x}\right)$$
                     /   /        2/x\\         \
                     |   |-1 + cot |-||         |
                     |   |         \2/|         |
              log(x) |log|------------|         |
/        2/x\\       |   |       2/x\ |         |
|-1 + cot |-||       |   |1 + cot |-| |         |
|         \2/|       |   \        \2/ /   log(x)|
|------------|      *|----------------- - ------|
|       2/x\ |       \        x           cot(x)/
|1 + cot |-| |                                   
\        \2/ /                                   
$$\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} \right)} + 1}\right)^{\log{\left(x \right)}} \left(- \frac{\log{\left(x \right)}}{\cot{\left(x \right)}} + \frac{\log{\left(\frac{\cot^{2}{\left(\frac{x}{2} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} \right)} + 1} \right)}}{x}\right)$$
                    /   /       2/x\\                  \
                    |   |1 - tan |-||                  |
                    |   |        \2/|                  |
             log(x) |log|-----------|                  |
/       2/x\\       |   |       2/x\|               /x\|
|1 - tan |-||       |   |1 + tan |-||   2*log(x)*tan|-||
|        \2/|       |   \        \2//               \2/|
|-----------|      *|---------------- - ---------------|
|       2/x\|       |       x                    2/x\  |
|1 + tan |-||       |                     1 - tan |-|  |
\        \2//       \                             \2/  /
$$\left(\frac{1 - \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1}\right)^{\log{\left(x \right)}} \left(- \frac{2 \log{\left(x \right)} \tan{\left(\frac{x}{2} \right)}}{1 - \tan^{2}{\left(\frac{x}{2} \right)}} + \frac{\log{\left(\frac{1 - \tan^{2}{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1} \right)}}{x}\right)$$
             /                 /    pi\       \
             |              cos|x - --|*log(x)|
   log(x)    |log(cos(x))      \    2 /       |
cos      (x)*|----------- - ------------------|
             \     x              cos(x)      /
$$\left(- \frac{\log{\left(x \right)} \cos{\left(x - \frac{\pi}{2} \right)}}{\cos{\left(x \right)}} + \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\right) \cos^{\log{\left(x \right)}}{\left(x \right)}$$
                    /   /     1     \                     \
                    |log|-----------|                     |
                    |   |   /pi    \|      /pi    \       |
             log(x) |   |csc|-- - x||   csc|-- - x|*log(x)|
/     1     \       |   \   \2     //      \2     /       |
|-----------|      *|---------------- - ------------------|
|   /pi    \|       \       x                 csc(x)      /
|csc|-- - x||                                              
\   \2     //                                              
$$\left(- \frac{\log{\left(x \right)} \csc{\left(- x + \frac{\pi}{2} \right)}}{\csc{\left(x \right)}} + \frac{\log{\left(\frac{1}{\csc{\left(- x + \frac{\pi}{2} \right)}} \right)}}{x}\right) \left(\frac{1}{\csc{\left(- x + \frac{\pi}{2} \right)}}\right)^{\log{\left(x \right)}}$$
(1/csc(pi/2 - x))^log(x)*(log(1/csc(pi/2 - x))/x - csc(pi/2 - x)*log(x)/csc(x))