Mister Exam

Other calculators:

Limit of the function y^2-x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2    \
 lim \y  - x/
y->0+        
$$\lim_{y \to 0^+}\left(- x + y^{2}\right)$$
Limit(y^2 - x, y, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
-x
$$- x$$
Other limits y→0, -oo, +oo, 1
$$\lim_{y \to 0^-}\left(- x + y^{2}\right) = - x$$
More at y→0 from the left
$$\lim_{y \to 0^+}\left(- x + y^{2}\right) = - x$$
$$\lim_{y \to \infty}\left(- x + y^{2}\right) = \infty$$
More at y→oo
$$\lim_{y \to 1^-}\left(- x + y^{2}\right) = 1 - x$$
More at y→1 from the left
$$\lim_{y \to 1^+}\left(- x + y^{2}\right) = 1 - x$$
More at y→1 from the right
$$\lim_{y \to -\infty}\left(- x + y^{2}\right) = \infty$$
More at y→-oo
One‐sided limits [src]
     / 2    \
 lim \y  - x/
y->0+        
$$\lim_{y \to 0^+}\left(- x + y^{2}\right)$$
-x
$$- x$$
     / 2    \
 lim \y  - x/
y->0-        
$$\lim_{y \to 0^-}\left(- x + y^{2}\right)$$
-x
$$- x$$
-x